0.5(1-4.1v)=-7.3(v+6.2)1.9v

Simple and best practice solution for 0.5(1-4.1v)=-7.3(v+6.2)1.9v equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5(1-4.1v)=-7.3(v+6.2)1.9v equation:



0.5(1-4.1v)=-7.3(v+6.2)1.9v
We move all terms to the left:
0.5(1-4.1v)-(-7.3(v+6.2)1.9v)=0
We add all the numbers together, and all the variables
0.5(-4.1v+1)-(-7.3(v+6.2)1.9v)=0
We multiply parentheses
-2v-(-7.3(v+6.2)1.9v)+0.5=0
We calculate terms in parentheses: -(-7.3(v+6.2)1.9v), so:
-7.3(v+6.2)1.9v
We multiply parentheses
-7v^2-43.4v
Back to the equation:
-(-7v^2-43.4v)
We get rid of parentheses
7v^2+43.4v-2v+0.5=0
We add all the numbers together, and all the variables
7v^2+41.4v+0.5=0
a = 7; b = 41.4; c = +0.5;
Δ = b2-4ac
Δ = 41.42-4·7·0.5
Δ = 1699.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41.4)-\sqrt{1699.96}}{2*7}=\frac{-41.4-\sqrt{1699.96}}{14} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41.4)+\sqrt{1699.96}}{2*7}=\frac{-41.4+\sqrt{1699.96}}{14} $

See similar equations:

| 6x-8=4x+4, | | 6x-8=3x+4, | | -1/2=a-7/10 | | 5x-12=x+14 | | 421.6=62x | | x–4=10 | | 6.5(2.6+6.2x)=208.78 | | 5=s18-3 | | -x=0-x | | 2y/y=4y | | 3=-3-3r | | -4x+18=-70 | | 3x+1x-6=2 | | 422.5=65x | | –14+4v=3v | | 4(6+6p)=-3(p+1) | | 8+35/n=15 | | d-1/4=1/2 | | 4-5x=3x+4 | | 8)-7(x+3)=-4(x-6} | | -4x+7x-x=3x-8x+7x | | 2(5m-1)=48 | | -4x+2x+4=356 | | 3(5m-1)=48 | | 0.9x=1/x | | y+12=-18 | | 2.7=7.2+y | | 4(-5k+7)=-7k-11 | | -305=5(-8v+3) | | -2/3x5=7 | | (x-7)=22 | | 7+11=-3(8x-6) |

Equations solver categories