0.5(x+20)=1/4x-5

Simple and best practice solution for 0.5(x+20)=1/4x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5(x+20)=1/4x-5 equation:



0.5(x+20)=1/4x-5
We move all terms to the left:
0.5(x+20)-(1/4x-5)=0
Domain of the equation: 4x-5)!=0
x∈R
We multiply parentheses
0.5x-(1/4x-5)+10=0
We get rid of parentheses
0.5x-1/4x+5+10=0
We multiply all the terms by the denominator
(0.5x)*4x+5*4x+10*4x-1=0
We add all the numbers together, and all the variables
(+0.5x)*4x+5*4x+10*4x-1=0
We multiply parentheses
0x^2+5*4x+10*4x-1=0
Wy multiply elements
0x^2+20x+40x-1=0
We add all the numbers together, and all the variables
x^2+60x-1=0
a = 1; b = 60; c = -1;
Δ = b2-4ac
Δ = 602-4·1·(-1)
Δ = 3604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3604}=\sqrt{4*901}=\sqrt{4}*\sqrt{901}=2\sqrt{901}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-2\sqrt{901}}{2*1}=\frac{-60-2\sqrt{901}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+2\sqrt{901}}{2*1}=\frac{-60+2\sqrt{901}}{2} $

See similar equations:

| -6(7+4r)=16 | | 5x^2+100x+9=0 | | -3x+7=-86 | | 245000+350x=3000000 | | x-6.8(x-2)=10 | | X/6+14=21x | | 4(n*5)=3(2n+10) | | 44-10x=16+4x | | 345000=25200-2x | | 10.31=p/3.4+5.09 | | 98-y=258 | | 25200-2x=345000 | | 50=198-y | | Y=7/3x+50 | | 4x+5=x+8 | | 4(6x-9.5)=36. | | 12×m=180 | | 1/5x+5=x-7 | | 6x14=3x+6 | | -4w/7=-8 | | -5x=15/7 | | 3X+y=185 | | 6x+54=68 | | x³-3x=37 | | 2/3(x+9)=4 | | -w+23=35 | | 24/v=6 | | -7x+2x+10=18 | | 37=3x+8 | | 24=6/7u | | -14/5=2x | | (3x-4)-(5x-8)=-(x=12)-6x+1 |

Equations solver categories