0.5(x+8)+3/2x=10

Simple and best practice solution for 0.5(x+8)+3/2x=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5(x+8)+3/2x=10 equation:



0.5(x+8)+3/2x=10
We move all terms to the left:
0.5(x+8)+3/2x-(10)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We multiply parentheses
0.5x+3/2x+4-10=0
We multiply all the terms by the denominator
(0.5x)*2x+4*2x-10*2x+3=0
We add all the numbers together, and all the variables
(+0.5x)*2x+4*2x-10*2x+3=0
We multiply parentheses
0x^2+4*2x-10*2x+3=0
Wy multiply elements
0x^2+8x-20x+3=0
We add all the numbers together, and all the variables
x^2-12x+3=0
a = 1; b = -12; c = +3;
Δ = b2-4ac
Δ = -122-4·1·3
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{33}}{2*1}=\frac{12-2\sqrt{33}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{33}}{2*1}=\frac{12+2\sqrt{33}}{2} $

See similar equations:

| x^2-8x=-32 | | 10+15=3-2x | | 7(10x+2)=70x-5 | | -x/2-3=1 | | 4x=5+9 | | z-6=7 | | 10x+9=10x-8 | | 0=r-1 | | 8.9+y=13.5 | | 2x-4(x-5)=-9+3x+4 | | -46-h=314 | | -3x=4(3x-2)=1 | | 23+t=642 | | -5=b/4-6 | | S=p/12 | | Y+3=3(y+7) | | 5=4+v/8 | | 4(8x-6)=5(-8x+7) | | -3*s=18 | | x/5-4=21/4 | | 56/b=8 | | 0.8x+5=0.2(40-x | | s+1.30=5.12 | | 54/5x+11=55x+121/3 | | 27+4v=7v | | -32=10-6n | | 27=18+p | | (x/2)+6=30 | | 2−2s=4/3s+13 | | 4x-3=(4x+6) | | 4.10=16.25-y | | $4.10=$16.25-y |

Equations solver categories