If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5k(k+1)++1=0.5(k+1)(k+2)
We move all terms to the left:
0.5k(k+1)++1-(0.5(k+1)(k+2))=0
We add all the numbers together, and all the variables
0.5k(k+1)-(0.5(k+1)(k+2))=0
We multiply parentheses
0k^2+0k-(0.5(k+1)(k+2))=0
We multiply parentheses ..
0k^2-(0.5(+k^2+2k+k+2))+0k=0
We calculate terms in parentheses: -(0.5(+k^2+2k+k+2)), so:We add all the numbers together, and all the variables
0.5(+k^2+2k+k+2)
We multiply parentheses
0.5k^2+k+0.5k+1
We add all the numbers together, and all the variables
0.5k^2+1.5k+1
Back to the equation:
-(0.5k^2+1.5k+1)
k^2+k-(0.5k^2+1.5k+1)=0
We get rid of parentheses
k^2-0.5k^2+k-1.5k-1=0
We add all the numbers together, and all the variables
0.5k^2-0.5k-1=0
a = 0.5; b = -0.5; c = -1;
Δ = b2-4ac
Δ = -0.52-4·0.5·(-1)
Δ = 2.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.5)-\sqrt{2.25}}{2*0.5}=\frac{0.5-\sqrt{2.25}}{1} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.5)+\sqrt{2.25}}{2*0.5}=\frac{0.5+\sqrt{2.25}}{1} $
| 5^(x+1)=8^(x+1) | | -6p+8=2 | | (z^2-1.5z+0.5)=0 | | 18=6/x | | |3x-25|=2 | | (9x+3)(x+1)=(9x+3)(5x-4) | | 6x–7=(6x+4) | | m2-3m+2=0 | | x-1=-3x+12 | | 6x-2-4(5x-2)+10=5(x-2)-3-9x | | e-34=61 | | 5x-3(2x-3)+4+5x=10+7(3x-2)-17x | | 5x-9=15+x | | 2,8x=400x | | 3a+12=2a-4= | | 8,5x=14 | | X^2-10x+4000=0 | | (-41+8y)=47 | | x*0.29=700 | | -7x+5(x-2)=-4 | | (12+5x)=47 | | 3.4-90x=1.6 | | 2x-3=-4x-12 | | 6y8=30 | | (1y-2)=38 | | 0,65^(x)=0.1 | | 3(3x+4)=7(x–2) | | 2+5x=3*2+3x | | 2x+-5=-7 | | 2-(x+5)=x+5 | | X*6=v | | 0.98=0.5^x |