0.5m-2.5=5/4m+2

Simple and best practice solution for 0.5m-2.5=5/4m+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5m-2.5=5/4m+2 equation:



0.5m-2.5=5/4m+2
We move all terms to the left:
0.5m-2.5-(5/4m+2)=0
Domain of the equation: 4m+2)!=0
m∈R
We get rid of parentheses
0.5m-5/4m-2-2.5=0
We multiply all the terms by the denominator
(0.5m)*4m-2*4m-(2.5)*4m-5=0
We add all the numbers together, and all the variables
(+0.5m)*4m-2*4m-(2.5)*4m-5=0
We multiply parentheses
0m^2-2*4m-10m-5=0
Wy multiply elements
0m^2-8m-10m-5=0
We add all the numbers together, and all the variables
m^2-18m-5=0
a = 1; b = -18; c = -5;
Δ = b2-4ac
Δ = -182-4·1·(-5)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{86}}{2*1}=\frac{18-2\sqrt{86}}{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{86}}{2*1}=\frac{18+2\sqrt{86}}{2} $

See similar equations:

| -3=4x+16-x | | 8a-4=4a-4 | | x/3+x/5=3 | | 2a-7÷4=-1/3 | | 84+73+58+(x+69)=360 | | 2x+8=3(x+6)-x | | 2/3k+1/4=-1/5+1/2k | | y/4-4=-20 | | 7n+27=8n+5(n-3) | | a/7+1=10 | | -9(x-7)=3(x | | a÷7+1=10 | | -40=w/5 | | -v/5=-53 | | 105=7(1-7r) | | .50x+.75x+.85x=700 | | 2x+67+58+(x+64)=360 | | .5x+.75x+.85x=400 | | 63=18v-9v | | 88=-2(5-7n) | | 4x-2-4=16 | | -5/3x+35=50 | | (x+5)(x+10)=176 | | -4x+7x-9=3(x-2)-7 | | 5x=100-45 | | 9/a+3=1-9/a-3 | | -(-1)+2/9y=1 | | A-4x+6=-18 | | x^2+8x−1=0 | | 5a=-45 | | 15y^2+14y-8=0. | | 15y2+14y−8=015y2+14y-8=0. |

Equations solver categories