If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x+2(3/4x-1)=1/4x+6
We move all terms to the left:
0.5x+2(3/4x-1)-(1/4x+6)=0
Domain of the equation: 4x-1)!=0
x∈R
Domain of the equation: 4x+6)!=0We multiply parentheses
x∈R
0.5x+6x-(1/4x+6)-2=0
We get rid of parentheses
0.5x+6x-1/4x-6-2=0
We multiply all the terms by the denominator
(0.5x)*4x+6x*4x-6*4x-2*4x-1=0
We add all the numbers together, and all the variables
(+0.5x)*4x+6x*4x-6*4x-2*4x-1=0
We multiply parentheses
0x^2+6x*4x-6*4x-2*4x-1=0
Wy multiply elements
0x^2+24x^2-24x-8x-1=0
We add all the numbers together, and all the variables
25x^2-32x-1=0
a = 25; b = -32; c = -1;
Δ = b2-4ac
Δ = -322-4·25·(-1)
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-2\sqrt{281}}{2*25}=\frac{32-2\sqrt{281}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+2\sqrt{281}}{2*25}=\frac{32+2\sqrt{281}}{50} $
| X^2+2x+20=-9 | | 6x+5(3x-22)=79 | | 9(x-3)-2(x+4)=10 | | 9x-4=6x+10 | | 3x—12=3(x+1)-15 | | 6=j+8 | | -4=-2x-4(-2x-17) | | 52-(x2)+x=10 | | -4.22+2.97=-5.3x | | 27=-2(3x-8) | | 5+3(x+2)=2x-14 | | -9x-5=-7x-11 | | -1.05y=0.210 | | 2n-3=53 | | 17+b=24 | | .5x+.3=10 | | 720=4(x+16) | | 20=-3(-5-2x) | | -5x-13=-13-4x | | Y=-4.9x^2+50 | | -10=2d-⅔ | | 12y=0.36 | | 34=9-w-2 | | 3.2+f=17.3 | | 2x+6(-3x-13)=-190 | | 10+5(x-2)=34 | | .52y+2.5=5 | | c-8=- | | 14+y=50-4y | | 6x+5x+-10=34 | | 10a-7=7a55- | | -8x+15-3x=26 |