0.5x+3=2/3x+1

Simple and best practice solution for 0.5x+3=2/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.5x+3=2/3x+1 equation:



0.5x+3=2/3x+1
We move all terms to the left:
0.5x+3-(2/3x+1)=0
Domain of the equation: 3x+1)!=0
x∈R
We get rid of parentheses
0.5x-2/3x-1+3=0
We multiply all the terms by the denominator
(0.5x)*3x-1*3x+3*3x-2=0
We add all the numbers together, and all the variables
(+0.5x)*3x-1*3x+3*3x-2=0
We multiply parentheses
0x^2-1*3x+3*3x-2=0
Wy multiply elements
0x^2-3x+9x-2=0
We add all the numbers together, and all the variables
x^2+6x-2=0
a = 1; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·1·(-2)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{11}}{2*1}=\frac{-6-2\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{11}}{2*1}=\frac{-6+2\sqrt{11}}{2} $

See similar equations:

| 9x-3=10x-12 | | 6=2(x | | 10x+1=5x+21 | | Y=x^2-3x-63 | | 8x-5x=-44-12 | | F=9c/5 | | x+.15x=1000000 | | 4(5r-7)=10r+2 | | 2(x/2+3)=10 | | a/5=6=16 | | 2(c-9)=-18 | | (r-10)/r=0.25 | | -84=4u+3u | | –4.6p–6.3p+3.9=–9 | | -18=2(w-5) | | (r-10)/5=0.1 | | -1/2(4x-12)=2 | | 4y+2(y+1)=58 | | 70=4u+6u | | 6y=11=49 | | -4(6+z)=-44 | | 6(x-3)=3x-8 | | 7(v-2)=7 | | 1/2(x-6)=3/5x | | .6x-3=15 | | 9x=-6(x+4) | | x/10=8=9 | | -15=x-(28) | | 1x-50=0.68x | | x=x2–9x–22 | | a/5=6=12 | | -x+3x+4=10 |

Equations solver categories