If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+x=40
We move all terms to the left:
0.5x^2+x-(40)=0
a = 0.5; b = 1; c = -40;
Δ = b2-4ac
Δ = 12-4·0.5·(-40)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-9}{2*0.5}=\frac{-10}{1} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+9}{2*0.5}=\frac{8}{1} =8 $
| 3×(-6.5)=3×z/3 | | 6y+15=5y+23 | | 16=18x.12 | | -0.1x^2+0.7x+3=0 | | 2k+9=k+12 | | 3x÷4=2x+3 | | 4-(x-6)=9(x+2) | | -y-(-5y-1)=-19 | | (-5t-2)-(3t+5)=3t+26 | | (5x+3)(x-6)=7 | | 14x=196¨ | | 2(2a-7)+7=-5 | | 6n+2(2n-7)=6 | | 4t^2+-8t+-15=0 | | 3(3x+5)=-(-3x+33) | | X*y=7*X | | 9+0,6x-0,6=0,7x | | √x^2+20√-x2+20−x+55=0 | | -3x^2+24x=-11 | | 6/7z-4=8 | | 13=6-7r | | (2x-1)2=(x+1) | | 18=2/3x | | 4c+8=-4c-56 | | -3x^2+24x+11=0 | | -3x+6=-2x+19 | | d+1=-6d+15 | | 5+0,3·(x-10)=0,4x | | 3y+7=-7y+7 | | V=4/3(3.14)7^3r | | x^2+10x+785.398163397448=0 | | 3y^2+75=150 |