0.60x(x+50)+0.80x=79

Simple and best practice solution for 0.60x(x+50)+0.80x=79 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.60x(x+50)+0.80x=79 equation:


Simplifying
0.60x(x + 50) + 0.80x = 79

Reorder the terms:
0.60x(50 + x) + 0.80x = 79
(50 * 0.60x + x * 0.60x) + 0.80x = 79
(30x + 0.60x2) + 0.80x = 79

Reorder the terms:
30x + 0.80x + 0.60x2 = 79

Combine like terms: 30x + 0.80x = 30.8x
30.8x + 0.60x2 = 79

Solving
30.8x + 0.60x2 = 79

Solving for variable 'x'.

Reorder the terms:
-79 + 30.8x + 0.60x2 = 79 + -79

Combine like terms: 79 + -79 = 0
-79 + 30.8x + 0.60x2 = 0

Begin completing the square.  Divide all terms by
0.60 the coefficient of the squared term: 

Divide each side by '0.60'.
-131.6666667 + 51.33333333x + x2 = 0

Move the constant term to the right:

Add '131.6666667' to each side of the equation.
-131.6666667 + 51.33333333x + 131.6666667 + x2 = 0 + 131.6666667

Reorder the terms:
-131.6666667 + 131.6666667 + 51.33333333x + x2 = 0 + 131.6666667

Combine like terms: -131.6666667 + 131.6666667 = 0.0000000
0.0000000 + 51.33333333x + x2 = 0 + 131.6666667
51.33333333x + x2 = 0 + 131.6666667

Combine like terms: 0 + 131.6666667 = 131.6666667
51.33333333x + x2 = 131.6666667

The x term is 51.33333333x.  Take half its coefficient (25.66666667).
Square it (658.7777779) and add it to both sides.

Add '658.7777779' to each side of the equation.
51.33333333x + 658.7777779 + x2 = 131.6666667 + 658.7777779

Reorder the terms:
658.7777779 + 51.33333333x + x2 = 131.6666667 + 658.7777779

Combine like terms: 131.6666667 + 658.7777779 = 790.4444446
658.7777779 + 51.33333333x + x2 = 790.4444446

Factor a perfect square on the left side:
(x + 25.66666667)(x + 25.66666667) = 790.4444446

Calculate the square root of the right side: 28.114843848

Break this problem into two subproblems by setting 
(x + 25.66666667) equal to 28.114843848 and -28.114843848.

Subproblem 1

x + 25.66666667 = 28.114843848 Simplifying x + 25.66666667 = 28.114843848 Reorder the terms: 25.66666667 + x = 28.114843848 Solving 25.66666667 + x = 28.114843848 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-25.66666667' to each side of the equation. 25.66666667 + -25.66666667 + x = 28.114843848 + -25.66666667 Combine like terms: 25.66666667 + -25.66666667 = 0.00000000 0.00000000 + x = 28.114843848 + -25.66666667 x = 28.114843848 + -25.66666667 Combine like terms: 28.114843848 + -25.66666667 = 2.448177178 x = 2.448177178 Simplifying x = 2.448177178

Subproblem 2

x + 25.66666667 = -28.114843848 Simplifying x + 25.66666667 = -28.114843848 Reorder the terms: 25.66666667 + x = -28.114843848 Solving 25.66666667 + x = -28.114843848 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-25.66666667' to each side of the equation. 25.66666667 + -25.66666667 + x = -28.114843848 + -25.66666667 Combine like terms: 25.66666667 + -25.66666667 = 0.00000000 0.00000000 + x = -28.114843848 + -25.66666667 x = -28.114843848 + -25.66666667 Combine like terms: -28.114843848 + -25.66666667 = -53.781510518 x = -53.781510518 Simplifying x = -53.781510518

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.448177178, -53.781510518}

See similar equations:

| 10m+9=7m | | 36=-6(6+a) | | P(x)=x^3+4x^2-7x+10 | | (4x^4)+(-21x^3)+(18x^2)+19x-6=0 | | 6-(2v+5)=-3(v-5)-4 | | 6x-2=-3x | | 4x-5=(x-1)+7 | | -9(t-2)-(t+9)=10 | | P(x)=x^3-x^2-8x+12 | | 8(1+4m)=3(m-8)+3 | | 14+20+3s=3s-3 | | 2x+20x-22=0 | | tan(2x)+2sin(x)=0 | | 1-3/4k=9/4 | | 2x+20x+-22=0 | | 9x^3=142 | | -3d+7=7-3d | | -4p-3=-7(p+3) | | x-2+x+2=106 | | -2+(-9)= | | -5(x+2)-6x=18-7x | | 40=-9t+4t | | 5z+2=2+5z | | 7u+8=-7+4u | | P(x)=x^3+4x^2-3x-18 | | 6x-7(x+1)-x=7 | | 3x=(x+28) | | -4t+7=-10-4t | | -5(2x-9)=2(x-14)-23 | | 9s-7=3-s | | -10+5h=-5h | | 3ln(2x)=5 |

Equations solver categories