0.6k(5k-3)+18.9=1.5k(3+2k)

Simple and best practice solution for 0.6k(5k-3)+18.9=1.5k(3+2k) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.6k(5k-3)+18.9=1.5k(3+2k) equation:



0.6k(5k-3)+18.9=1.5k(3+2k)
We move all terms to the left:
0.6k(5k-3)+18.9-(1.5k(3+2k))=0
We add all the numbers together, and all the variables
0.6k(5k-3)-(1.5k(2k+3))+18.9=0
We multiply parentheses
0k^2+0k-(1.5k(2k+3))+18.9=0
We calculate terms in parentheses: -(1.5k(2k+3)), so:
1.5k(2k+3)
We multiply parentheses
2k^2+3k
Back to the equation:
-(2k^2+3k)
We add all the numbers together, and all the variables
k^2+k-(2k^2+3k)+18.9=0
We get rid of parentheses
k^2-2k^2+k-3k+18.9=0
We add all the numbers together, and all the variables
-1k^2-2k+18.9=0
a = -1; b = -2; c = +18.9;
Δ = b2-4ac
Δ = -22-4·(-1)·18.9
Δ = 79.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-\sqrt{79.6}}{2*-1}=\frac{2-\sqrt{79.6}}{-2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+\sqrt{79.6}}{2*-1}=\frac{2+\sqrt{79.6}}{-2} $

See similar equations:

| 9-3x/4=1/3 | | 8x+4=5x+-8 | | (12+5x=32) | | (12+5x=32)÷2 | | x+73423213=1 | | 22^x=4123 | | 5(b-4)+2b=(3b+4) | | x-8=1.5x | | 2/(1/2x+1)=3 | | 2=1.5x+3 | | 6x-1+11x-1=180 | | 3x-13=×-7 | | F(x)=-2+6 | | 5t^2-18t=0 | | x^2+18-63=0 | | 3=2.7y | | Y=-65x+225 | | 0.6x+1.2=0.2x | | 4x-(2x+7)=4x+3 | | 10+6x=16+9x-3x | | 2(x-5)+3=4x+5 | | 12x+5+2x=4x+7+10x-2 | | C√2+3c=0 | | 4x+10x/7=2x | | X=y-23 | | Y=2z-56 | | (0.5)x=(0.25)1-x | | 0,5x-3=x+3 | | 0,5x-3=x+3¨ | | 14−b8​ =  17 | | 11=5x8 | | 75⋅x2=60 |

Equations solver categories