0.6x+7/4x+x=4014

Simple and best practice solution for 0.6x+7/4x+x=4014 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.6x+7/4x+x=4014 equation:



0.6x+7/4x+x=4014
We move all terms to the left:
0.6x+7/4x+x-(4014)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
1.6x+7/4x-4014=0
We multiply all the terms by the denominator
(1.6x)*4x-4014*4x+7=0
We add all the numbers together, and all the variables
(+1.6x)*4x-4014*4x+7=0
We multiply parentheses
4x^2-4014*4x+7=0
Wy multiply elements
4x^2-16056x+7=0
a = 4; b = -16056; c = +7;
Δ = b2-4ac
Δ = -160562-4·4·7
Δ = 257795024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{257795024}=\sqrt{16*16112189}=\sqrt{16}*\sqrt{16112189}=4\sqrt{16112189}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16056)-4\sqrt{16112189}}{2*4}=\frac{16056-4\sqrt{16112189}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16056)+4\sqrt{16112189}}{2*4}=\frac{16056+4\sqrt{16112189}}{8} $

See similar equations:

| 0.07x+x=50 | | 56u+2–u=16u | | 70(180-70-y)=180 | | −w=−9 | | 3p/4+6=12 | | 7x-5=2×+15 | | 11x+15=P,L | | 2x/5-3=x/7+6 | | 9((y+5)=27 | | X+0,1925x=19 | | x*600-600=40 | | 5e=-40 | | 3ײ=4×+c | | -5×-11=8x | | 1.35^x=4.17 | | 5m=3m=16 | | 30x+5(x-13)=8223,45 | | (3/5x)-15-9=20 | | 2a-a^2=0.1464466094 | | 0,6x=9 | | 6.6^(10x)=3 | | Z=9y | | 30x+(5x-65)=8223,45 | | 4x+8x=2520 | | Y=55-11x= | | 3(7x-1)-(2x-1-x/3)=x+3/2 | | a-12=5a-2 | | W^2^2+13w²+36=0 | | 30x+(5x-65)=8613,45 | | x²=1.5 | | 5x+(x-13)=1408 | | 51=3+8m |

Equations solver categories