0.6x-2=14-11/3x

Simple and best practice solution for 0.6x-2=14-11/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.6x-2=14-11/3x equation:



0.6x-2=14-11/3x
We move all terms to the left:
0.6x-2-(14-11/3x)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.6x-(-11/3x+14)-2=0
We get rid of parentheses
0.6x+11/3x-14-2=0
We multiply all the terms by the denominator
(0.6x)*3x-14*3x-2*3x+11=0
We add all the numbers together, and all the variables
(+0.6x)*3x-14*3x-2*3x+11=0
We multiply parentheses
0x^2-14*3x-2*3x+11=0
Wy multiply elements
0x^2-42x-6x+11=0
We add all the numbers together, and all the variables
x^2-48x+11=0
a = 1; b = -48; c = +11;
Δ = b2-4ac
Δ = -482-4·1·11
Δ = 2260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2260}=\sqrt{4*565}=\sqrt{4}*\sqrt{565}=2\sqrt{565}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-2\sqrt{565}}{2*1}=\frac{48-2\sqrt{565}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+2\sqrt{565}}{2*1}=\frac{48+2\sqrt{565}}{2} $

See similar equations:

| 2/5x+14=16 | | K=3r-42 | | 4(3x+4)=14x+14-2x+2 | | 6x-4+2x=4(5+2x) | | -4=-3/4x+1 | | 12=4a+2a= | | b+51=78 | | 8-8(b-7)=112 | | (6x-63)+(4x-3)=180 | | (x+12)^2=140 | | −4(3/2x−12)=−15 | | 3{n-1}=15 | | a+2/2=- | | -2.3f=-9.2 | | 15=x/6- | | -12(3y+8)-5y=-2y+16 | | -6/a-6=4-a/a-6 | | a-13=85 | | 1=s−89 | | a-13=83 | | 10x+1=139 | | 14s=-56 | | 6x–4+2x=4(5+2x) | | 10x=266 | | 10x+1+57=82 | | 2(w−34)=34 | | 266=4x+2x+2x+2x | | 7(2-3x)-15(2x-3)=17 | | 2(=8x+9)=17 | | 4.5(y+6.5)=7y+10 | | 6(u+10)=96 | | -4x=304 |

Equations solver categories