If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.75x+40=11/3x
We move all terms to the left:
0.75x+40-(11/3x)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
0.75x-(+11/3x)+40=0
We get rid of parentheses
0.75x-11/3x+40=0
We multiply all the terms by the denominator
(0.75x)*3x+40*3x-11=0
We add all the numbers together, and all the variables
(+0.75x)*3x+40*3x-11=0
We multiply parentheses
0x^2+40*3x-11=0
Wy multiply elements
0x^2+120x-11=0
We add all the numbers together, and all the variables
x^2+120x-11=0
a = 1; b = 120; c = -11;
Δ = b2-4ac
Δ = 1202-4·1·(-11)
Δ = 14444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14444}=\sqrt{4*3611}=\sqrt{4}*\sqrt{3611}=2\sqrt{3611}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-2\sqrt{3611}}{2*1}=\frac{-120-2\sqrt{3611}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+2\sqrt{3611}}{2*1}=\frac{-120+2\sqrt{3611}}{2} $
| 3(2k-5)=4-7k/2 | | 1+3/4x=10 | | 0.75x+40=11/3 | | a-1=0.95 | | -7x-7=9 | | s-2=13 | | 5(x+4)-2(x+1)=6x | | 39=-3b | | -(12+7x)-6(-7-x)=36 | | 77-w=194 | | 10x+71+21x=47+20x-108 | | 3(x-2)-7x=34 | | 10x+71+21x=47 | | x^2-14x+176=0 | | 4m-4=(-24) | | 7y+5=45 | | 3x(x–5)-2(14–3x)=7. | | h+23/7=9 | | 8=m+32/6 | | (1-x)/(x+5)=3x+11 | | 5x+3-2=1+6x-22 | | 50=25x+15x | | Y=128-12x | | 9m-93=45 | | x^2-1.1x-0.5=0 | | 5(s-4)=30 | | (3x-11)/(1-x)=(x+5) | | (3x-11)/(1-x)=0 | | N(n+5)=-2 | | v/6+19=27 | | 5(s–4)=30 | | 6h-24=24 |