If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.8x-8=9/25x+3.x
We move all terms to the left:
0.8x-8-(9/25x+3.x)=0
Domain of the equation: 25x+3.x)!=0We add all the numbers together, and all the variables
x∈R
0.8x-(+3.x+9/25x)-8=0
We get rid of parentheses
0.8x-3.x-9/25x-8=0
We multiply all the terms by the denominator
(0.8x)*25x-(3.x)*25x-8*25x-9=0
We add all the numbers together, and all the variables
(+0.8x)*25x-(+3.x)*25x-8*25x-9=0
We multiply parentheses
0x^2-75x^2-8*25x-9=0
Wy multiply elements
0x^2-75x^2-200x-9=0
We add all the numbers together, and all the variables
-74x^2-200x-9=0
a = -74; b = -200; c = -9;
Δ = b2-4ac
Δ = -2002-4·(-74)·(-9)
Δ = 37336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37336}=\sqrt{4*9334}=\sqrt{4}*\sqrt{9334}=2\sqrt{9334}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-2\sqrt{9334}}{2*-74}=\frac{200-2\sqrt{9334}}{-148} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+2\sqrt{9334}}{2*-74}=\frac{200+2\sqrt{9334}}{-148} $
| 0.8x-8=9/25x+3 | | 14x-9=-7+10x | | 2x^2+5x^2-11x+4=0 | | c/9+-18=-20 | | -3x+97=-5x+121 | | 180=4x+22 | | 29=u/9+24 | | 8+4=-2(5x-6) | | 10x+8x+11+205+82=360 | | n/6+43=47 | | 3=d+21/9 | | 3=d+29/9 | | 6x-72=18 | | 5(4x+5)=-23+8 | | c-73/3=8 | | 6x-62=-18 | | 2(u+27)=80 | | 8v-11=3v-6 | | 11n/4=22 | | 7x²+3x-6=0 | | -5+x/22=-2 | | 44=20+b | | 12x-10=11x-5 | | d/8+28=35 | | 13x-15+2x+9=36-x | | r/6+31=40 | | 5r+3=21 | | Y=7.6x=1.9 | | Y+5x=8;x= | | 3x+6+2x+8+6×+7+6x+7=180 | | n*4.4=264 | | 3x+6+2x+9+6×+7+6x+7=180 |