0=(2-i)(1-6i)

Simple and best practice solution for 0=(2-i)(1-6i) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(2-i)(1-6i) equation:



0=(2-i)(1-6i)
We move all terms to the left:
0-((2-i)(1-6i))=0
We add all the numbers together, and all the variables
-((-1i+2)(-6i+1))+0=0
We add all the numbers together, and all the variables
-((-1i+2)(-6i+1))=0
We multiply parentheses ..
-((+6i^2-1i-12i+2))=0
We calculate terms in parentheses: -((+6i^2-1i-12i+2)), so:
(+6i^2-1i-12i+2)
We get rid of parentheses
6i^2-1i-12i+2
We add all the numbers together, and all the variables
6i^2-13i+2
Back to the equation:
-(6i^2-13i+2)
We get rid of parentheses
-6i^2+13i-2=0
a = -6; b = 13; c = -2;
Δ = b2-4ac
Δ = 132-4·(-6)·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-11}{2*-6}=\frac{-24}{-12} =+2 $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+11}{2*-6}=\frac{-2}{-12} =1/6 $

See similar equations:

| |y|+(-10)=-12 | | (r)/(60)=(40)/(50) | | 20/10=x/6 | | 7-((x/5)-3)=(-4/9) | | X+x+14=82 | | 0=(-8+8i)(5+7i) | | (x-3)/(x-8)=3 | | 7-(x/5-3)=-4/9 | | 7+19(x-13)=187 | | -5/3=-2/3x | | 8(m-5)=2(3m-8 | | 5*2^3x=21 | | 4/9÷a=12 | | 2x-(1+x)=11 | | 0=(-1-i)-(7-6i) | | 10-3(r+4)=-23 | | 9=18+2p | | 12x-1=12-1 | | 6-1/3x=x-2 | | 6(12x-10)=2(-5x+8)+6 | | .3x+.2x+14=x | | 13/4x+7=5/2x+13 | | -x/7-19=-5 | | 0=(-6+6i)+(7-i) | | 4x+2=-x-38 | | x+2/8-x/12=1/2 | | Y÷5=9÷5y | | 3y-1=-16 | | 7x-6+4x-3=180 | | 0=(-1-8i)+(8+5i) | | 5c-2+c=-8-4c-2 | | 14+3p=2 |

Equations solver categories