0=(20-x)*(300+48*x)

Simple and best practice solution for 0=(20-x)*(300+48*x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(20-x)*(300+48*x) equation:



0=(20-x)(300+48x)
We move all terms to the left:
0-((20-x)(300+48x))=0
We add all the numbers together, and all the variables
-((-1x+20)(48x+300))+0=0
We add all the numbers together, and all the variables
-((-1x+20)(48x+300))=0
We multiply parentheses ..
-((-48x^2-300x+960x+6000))=0
We calculate terms in parentheses: -((-48x^2-300x+960x+6000)), so:
(-48x^2-300x+960x+6000)
We get rid of parentheses
-48x^2-300x+960x+6000
We add all the numbers together, and all the variables
-48x^2+660x+6000
Back to the equation:
-(-48x^2+660x+6000)
We get rid of parentheses
48x^2-660x-6000=0
a = 48; b = -660; c = -6000;
Δ = b2-4ac
Δ = -6602-4·48·(-6000)
Δ = 1587600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1587600}=1260$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-660)-1260}{2*48}=\frac{-600}{96} =-6+1/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-660)+1260}{2*48}=\frac{1920}{96} =20 $

See similar equations:

| x=(20-x)*(300+68*x) | | 7x+5(-2x+4)=2 | | 3p^2-7p=0 | | x=x(16-2x) | | (5x+6)(5x+6)=0 | | 12x+3(-2x+6)=10 | | 75/8=w3/8 | | X+18x=180 | | 4+z=5 | | 93/8=3/8w | | 12=-16t^2+28t+2 | | 2.5x+.5x=2.5+4.5x | | 1/3u-3/2=-6/5 | | 3x=5=x+11 | | 2x6=52 | | 2c+(3c-4)=8c-4 | | -x/9=7 | | -2(x-3)+5x=15 | | 10=-2c=+22 | | x-8=158 | | -(1.7x)-6(-7-x)=36 | | 4x+5+3x=5 | | 2x-13=67 | | 4(-6+7x)=4 | | 4(z+7)+2z=1 | | 0=3^x+8 | | 6(1t-2)-76=-142 | | 1378=26p+15 | | i÷3-10=-6 | | 1/3(6x-24)=x-4 | | y=2*0+28 | | 0=2*x+8 |

Equations solver categories