0=(2n-63)(n-30)

Simple and best practice solution for 0=(2n-63)(n-30) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(2n-63)(n-30) equation:



0=(2n-63)(n-30)
We move all terms to the left:
0-((2n-63)(n-30))=0
We add all the numbers together, and all the variables
-((2n-63)(n-30))=0
We multiply parentheses ..
-((+2n^2-60n-63n+1890))=0
We calculate terms in parentheses: -((+2n^2-60n-63n+1890)), so:
(+2n^2-60n-63n+1890)
We get rid of parentheses
2n^2-60n-63n+1890
We add all the numbers together, and all the variables
2n^2-123n+1890
Back to the equation:
-(2n^2-123n+1890)
We get rid of parentheses
-2n^2+123n-1890=0
a = -2; b = 123; c = -1890;
Δ = b2-4ac
Δ = 1232-4·(-2)·(-1890)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(123)-3}{2*-2}=\frac{-126}{-4} =31+1/2 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(123)+3}{2*-2}=\frac{-120}{-4} =+30 $

See similar equations:

| -20y+15=11-16y+2 | | –3x–2(2x–4)=-6x+4+8x | | x+53+x+143=180 | | 1=x-22 | | -20=4v+6v | | x+3x+2x+16=49 | | 6(y-3)=4y-26= | | 3v-(1-v)=21-6v | | 10=3x+2(x-5) | | 4n-2=5+4n | | 4-7=-(8x+4)+2 | | 88-9x=7x-49 | | 7/2​x−2=28−4x | | 5+5x=-13 | | 1.5h/1.25h=8h | | -3-5w=-33 | | 30=m−18 | | 2m=480.6 | | -4-4(-x-1)=4(6+2x) | | 1m+5=1.6 | | (m-1)6=3(3m+8) | | 1.5h/1.2h5=8h | | X^2-4x-20=12 | | 3x+7-4x=15+2 | | 2m=80.6 | | 4(3x+9)=-20+44 | | (m-1)6=3(3m+8 | | 9x×3x+1=2187 | | 3a+6=3a-8 | | x/3+7=-12 | | 7(2x+3)+4x=7+5(3x-4)+x | | -8-2x=7x-2 |

Equations solver categories