If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=(2x-7)(3x+8)+11x
We move all terms to the left:
0-((2x-7)(3x+8)+11x)=0
We add all the numbers together, and all the variables
-((2x-7)(3x+8)+11x)=0
We multiply parentheses ..
-((+6x^2+16x-21x-56)+11x)=0
We calculate terms in parentheses: -((+6x^2+16x-21x-56)+11x), so:We get rid of parentheses
(+6x^2+16x-21x-56)+11x
We get rid of parentheses
6x^2+16x-21x+11x-56
We add all the numbers together, and all the variables
6x^2+6x-56
Back to the equation:
-(6x^2+6x-56)
-6x^2-6x+56=0
a = -6; b = -6; c = +56;
Δ = b2-4ac
Δ = -62-4·(-6)·56
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{345}}{2*-6}=\frac{6-2\sqrt{345}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{345}}{2*-6}=\frac{6+2\sqrt{345}}{-12} $
| -7c-1=-20 | | 5x+3(7x-16)=108 | | 9p+2=1 | | s/1.5=2 | | 3x+3/4=4/5 | | 25y+8-4y-7=43 | | 12n2+48n=−n3−6412n2+48n=−n3−64 | | 6x+2(2x+3)=106 | | 2x+1+3x+3=6x-10 | | Y=1/2x^-3x+4 | | x+1.2=6 | | 12x+20=10x-30 | | p/4=13 | | 4(15-a)=20-9a | | 4(r-10)=0 | | c+4=-3 | | 100=(-32x^2/4225)+x+190 | | 29r+4=2813r | | 5p+8-9p=-12 | | 8x+13=-7x-20 | | 2x+3(7x+7)=182 | | -0.7x+0.5-3=2 | | 8x+13=8x-20 | | n/35=4/20 | | 3(c-19)=2(c-23) | | 5/4=10/x+2 | | c=9/5(-20)+32=-36+32=-4 | | 2f+3=803 | | 2/a=(5/2)/(5/4) | | 12x^2+15-2=0 | | 3q-5=3.4 | | 5/4p=10 |