0=(3x-5)(2x+3)

Simple and best practice solution for 0=(3x-5)(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(3x-5)(2x+3) equation:



0=(3x-5)(2x+3)
We move all terms to the left:
0-((3x-5)(2x+3))=0
We add all the numbers together, and all the variables
-((3x-5)(2x+3))=0
We multiply parentheses ..
-((+6x^2+9x-10x-15))=0
We calculate terms in parentheses: -((+6x^2+9x-10x-15)), so:
(+6x^2+9x-10x-15)
We get rid of parentheses
6x^2+9x-10x-15
We add all the numbers together, and all the variables
6x^2-1x-15
Back to the equation:
-(6x^2-1x-15)
We get rid of parentheses
-6x^2+1x+15=0
We add all the numbers together, and all the variables
-6x^2+x+15=0
a = -6; b = 1; c = +15;
Δ = b2-4ac
Δ = 12-4·(-6)·15
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*-6}=\frac{-20}{-12} =1+2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*-6}=\frac{18}{-12} =-1+1/2 $

See similar equations:

| (3)/(7)p+1=(1)/(3) | | 7=16-(15)/(14)x | | 4x÷8=3 | | 6n=(9)/(11) | | 5^-x=5^3x-1 | | F(x)=(30-2x)(30-2x) | | 1.4l-45.8=77.1-0.2 | | |x|-22=14 | | 4(x+2)=-8+4x | | 13/y=8/11 | | k/8.9+88.5=42.4 | | x=2x-83 | | 6x+1+3x+11=25 | | -8.5x+0.84=-5.96 | | g–3+ –17=–19 | | 16=-5t-4 | | 2(c-16)=-2 | | q=62+1-4 | | q-459/12=24 | | 2(c-16)=30 | | 9x-3+5x=4x+4-6 | | z/4+3=-45 | | k/5+8=23 | | p/11+268=281 | | s/14-6=2 | | -32x=8x-320 | | 2(14+w)=56 | | 32x=8x-320 | | 45+x=126 | | 0=x2=6 | | 9x+5=208 | | 173=b/25-161 |

Equations solver categories