If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=(n-2)(n-6)-10(n+4)
We move all terms to the left:
0-((n-2)(n-6)-10(n+4))=0
We add all the numbers together, and all the variables
-((n-2)(n-6)-10(n+4))=0
We multiply parentheses ..
-((+n^2-6n-2n+12)-10(n+4))=0
We calculate terms in parentheses: -((+n^2-6n-2n+12)-10(n+4)), so:We get rid of parentheses
(+n^2-6n-2n+12)-10(n+4)
We multiply parentheses
(+n^2-6n-2n+12)-10n-40
We get rid of parentheses
n^2-6n-2n-10n+12-40
We add all the numbers together, and all the variables
n^2-18n-28
Back to the equation:
-(n^2-18n-28)
-n^2+18n+28=0
We add all the numbers together, and all the variables
-1n^2+18n+28=0
a = -1; b = 18; c = +28;
Δ = b2-4ac
Δ = 182-4·(-1)·28
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{109}}{2*-1}=\frac{-18-2\sqrt{109}}{-2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{109}}{2*-1}=\frac{-18+2\sqrt{109}}{-2} $
| -14x+4=19-15x | | 6x-18=5x+7 | | 17x-10=-7+16x | | 2w+((7+w)+2)=42 | | X+(x+40)+(x-10)=360 | | –4x–20=–8x–8 | | 16(x~3)=~80 | | 2x5−12=x5 | | 50-4x=3x+8 | | 8(n~1)=52 | | 1/2x^2+3/4x=0 | | 21x=7+7x | | 15b=30 | | 2x/3=37 | | c2-3c=0 | | 5p+3=2p-12 | | 300x=0.95 | | 4x^2+80x-9600=0 | | (Q-9)x6=30 | | 6⋅x=26−8 | | 6⋅√x=26−8 | | 5+3x-17=6x-6-x | | 6⋅x√=26−8 | | 7,25-9=x | | 3(2x-7)-x=5+2(3x-8) | | x=5+0.5/1 | | 7,25-9=-7,25+x | | 6+2x-18=8x-6-x | | 49-25x²=0 | | 5x-3=9+1x | | 4,5+-8=x | | 4,5-8=4,5+x |