0=(t-4)(t+8)

Simple and best practice solution for 0=(t-4)(t+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(t-4)(t+8) equation:



0=(t-4)(t+8)
We move all terms to the left:
0-((t-4)(t+8))=0
We add all the numbers together, and all the variables
-((t-4)(t+8))=0
We multiply parentheses ..
-((+t^2+8t-4t-32))=0
We calculate terms in parentheses: -((+t^2+8t-4t-32)), so:
(+t^2+8t-4t-32)
We get rid of parentheses
t^2+8t-4t-32
We add all the numbers together, and all the variables
t^2+4t-32
Back to the equation:
-(t^2+4t-32)
We get rid of parentheses
-t^2-4t+32=0
We add all the numbers together, and all the variables
-1t^2-4t+32=0
a = -1; b = -4; c = +32;
Δ = b2-4ac
Δ = -42-4·(-1)·32
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12}{2*-1}=\frac{-8}{-2} =+4 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12}{2*-1}=\frac{16}{-2} =-8 $

See similar equations:

| 13x-1=11x-8 | | 1=c/7-5 | | 8-x=2{x-8} | | m/2+-7=-6 | | y/2+-9=-13 | | -12+5x=2x+12 | | u-70/3=7 | | 3.2x+2-5.2x=56 | | 2t−5=–3 | | 7/5+6x=28/5-7x | | 1.2-x=1.4 | | 28+x=-20-5x | | s3+ –6=–7 | | -10-2x=-5x+17 | | 5x-4=0.295+20x) | | 4/3+2x=8/3-3x | | 8x-42=3x+2 | | 5=6z | | –3=s2+ –5 | | 6+2x-5=9x+7-6x | | 9z/4+1/2=2 | | 8x−9=11x+12 | | v/2+-1=-3 | | -8=2/3y | | 9/11=-3/8k | | -9.1=10.1+w/6 | | 5x/11-4/11=-1/11 | | -6x-2(-3x-5)=10 | | 18x+16x=12 | | 7(y-0/7)=-3 | | x=1/3x+12 | | -81=(r/(-10))+(-87) |

Equations solver categories