0=-(x-3)(x-3)+9

Simple and best practice solution for 0=-(x-3)(x-3)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-(x-3)(x-3)+9 equation:



0=-(x-3)(x-3)+9
We move all terms to the left:
0-(-(x-3)(x-3)+9)=0
We add all the numbers together, and all the variables
-(-(x-3)(x-3)+9)=0
We multiply parentheses ..
-(-(+x^2-3x-3x+9)+9)=0
We calculate terms in parentheses: -(-(+x^2-3x-3x+9)+9), so:
-(+x^2-3x-3x+9)+9
We get rid of parentheses
-x^2+3x+3x-9+9
We add all the numbers together, and all the variables
-1x^2+6x
Back to the equation:
-(-1x^2+6x)
We get rid of parentheses
1x^2-6x=0
We add all the numbers together, and all the variables
x^2-6x=0
a = 1; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·1·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*1}=\frac{0}{2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*1}=\frac{12}{2} =6 $

See similar equations:

| (2x-12)+(x-12)=42 | | 6(2x-3)=10x+4 | | 18x+7=9x+97 | | 4u-5(u-3)=-u+11 | | |2x-3|=4x | | 1. 3(5−2x)=−2(6–3x)−10x | | –2(6x+8)+7x=3x–2(12+4x) | | 6+16p-3=7p+69-2p | | 160+20x=12x | | 4(t-5)+4t=4(2t+5)-10 | | -2x^2+20x=44 | | 2(x-4)+3x=2 | | 25=0,25x | | 250=0,25x | | 14=180y-1 | | x*2.75=297 | | x-15x+52=0 | | -15=3(x-2) | | 3+x=-x+8 | | P=3d | | 21/4(4y-8)+3y+7=(y+1)+5y | | (180-4x)+90+(90-x)=180 | | 0=2x^2+20x-44 | | 5x-10=x-38 | | 0=-2x^2=12x=13 | | x+x+x+x*3/4+3=300 | | ((5x12)/3+30=50 | | 0=-2(x-3)(x-3)+4 | | (13b-8)-3(4b+3)=-3 | | 0=-3t^2+18t+2 | | 7(4+2x)-8=76 | | 5y-3=3+y |

Equations solver categories