0=-16t2+54t+24

Simple and best practice solution for 0=-16t2+54t+24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t2+54t+24 equation:



0=-16t^2+54t+24
We move all terms to the left:
0-(-16t^2+54t+24)=0
We add all the numbers together, and all the variables
-(-16t^2+54t+24)=0
We get rid of parentheses
16t^2-54t-24=0
a = 16; b = -54; c = -24;
Δ = b2-4ac
Δ = -542-4·16·(-24)
Δ = 4452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4452}=\sqrt{4*1113}=\sqrt{4}*\sqrt{1113}=2\sqrt{1113}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{1113}}{2*16}=\frac{54-2\sqrt{1113}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{1113}}{2*16}=\frac{54+2\sqrt{1113}}{32} $

See similar equations:

| 3+p+2=10 | | 3v+–3=–18 | | (3a-9)(3a-9)=0 | | 180=(6x+9)+3x | | 4x^2-13=15 | | -2+v8=-4 | | -3^2x=-21 | | 5p+10=15 | | X^3+32=77+4x | | n-7=-5+3n | | w3+5=7 | | 1-0.5x=3 | | n-7=-5+3 | | -5(u-75)=-65 | | 8x−20=x+15 | | 2/f=3+1/5 | | 8s+13=85 | | –2+–3f=–5 | | f(×)=-4.5 | | (x-4)^2-31=30 | | 4x−24+4−2x=−6 | | 2×(b+3)=b×(2b+1) | | 4z+12=20 | | 5x+2(1−7x)=−34 | | n/8+3=-2 | | x+78+66=180. | | x(6-4)=13 | | 3x+8(6+5x)=5 | | 200=8(1/2x+5) | | 6w=189 | | 8x+6=2-3x | | -7(x+4)=63 |

Equations solver categories