0=-16t2+72t+5

Simple and best practice solution for 0=-16t2+72t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t2+72t+5 equation:



0=-16t^2+72t+5
We move all terms to the left:
0-(-16t^2+72t+5)=0
We add all the numbers together, and all the variables
-(-16t^2+72t+5)=0
We get rid of parentheses
16t^2-72t-5=0
a = 16; b = -72; c = -5;
Δ = b2-4ac
Δ = -722-4·16·(-5)
Δ = 5504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5504}=\sqrt{64*86}=\sqrt{64}*\sqrt{86}=8\sqrt{86}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{86}}{2*16}=\frac{72-8\sqrt{86}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{86}}{2*16}=\frac{72+8\sqrt{86}}{32} $

See similar equations:

| 9+2x=-2343473473857684857465746574657383758367587574765847584754857485748 | | g−2/7​ =2/7​ | | 3/4v-9/8=-4/3 | | -y(y-8)=0 | | 20-6x+0.5x^2=0 | | (31/3)y+4=16 | | -(2x)=3/4x-4 | | (3x-5)/(x-6)=3/4 | | Y=-16t^2+25t+5 | | 30x+24Y=25.50 | | -3x+55=x+19 | | 8c+7c=30 | | f^2+20f-1=0 | | 5.) 2(x-1)-6x=10-2(x-4) | | 0.8^x=8 | | s^2+20s-47=0 | | 22u=-u^2 | | 2j^2=-98j | | 2g^2-13g+15=0 | | 4m^2+13m-12=0 | | -64x^2+4050-5200=0 | | 2^-2x=0 | | 0.0001x^2+0.06x-1.5=0 | | y^2-21y+20=0 | | y2–21y+20=0 | | 4.9x^2+5x-650=0 | | y^2–21y+20=0 | | 3g^2+16g-12=0 | | -0.0001x^2+0.06x-1.5=0 | | 7j-4(2j-4)=9 | | 50s^2+23s-1=0 | | 4s^2+20-11=0 |

Equations solver categories