If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+90
We move all terms to the left:
0-(-16t^2+90)=0
We add all the numbers together, and all the variables
-(-16t^2+90)=0
We get rid of parentheses
16t^2-90=0
a = 16; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·16·(-90)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*16}=\frac{0-24\sqrt{10}}{32} =-\frac{24\sqrt{10}}{32} =-\frac{3\sqrt{10}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*16}=\frac{0+24\sqrt{10}}{32} =\frac{24\sqrt{10}}{32} =\frac{3\sqrt{10}}{4} $
| 2f/2=80/2 | | 2.5x-4=3x-8 | | 10/2=2/n | | 0=-16t2+70 | | x=4^x+3(x-1) | | -8x-23=1 | | x=4√x+3(x-1) | | 0.03x0.03x0.03x0.03x0.03=1 | | -7(3x+7))=175 | | -3z+3=3/5 | | -2(-3x-3)=6 | | 5x+7+6x-3+15x=180 | | 7n=−28 | | (2x-4)=(2x-6)140 | | 5+y=26 | | 6y+4=–4+8y | | 4x–11=-2x+1 | | 3x-6-114=180 | | 4(-7)+x=-13 | | 273=40+x | | 6n÷12=3 | | 3n–16=–5n–8 | | -15/6p+1=22/9 | | 273+40+x=180 | | 1/4(z+3)=1 | | -4-81x^2=0 | | 500+.05x=875 | | 8=m÷72 | | 52=9n+17n | | -4x(x+2)=0 | | 140+.70x=297.50 | | T=130.82+0.61m |