0=-6x(x+2)+7x2

Simple and best practice solution for 0=-6x(x+2)+7x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-6x(x+2)+7x2 equation:



0=-6x(x+2)+7x^2
We move all terms to the left:
0-(-6x(x+2)+7x^2)=0
We add all the numbers together, and all the variables
-(-6x(x+2)+7x^2)=0
We calculate terms in parentheses: -(-6x(x+2)+7x^2), so:
-6x(x+2)+7x^2
determiningTheFunctionDomain 7x^2-6x(x+2)
We multiply parentheses
7x^2-6x^2-12x
We add all the numbers together, and all the variables
x^2-12x
Back to the equation:
-(x^2-12x)
We get rid of parentheses
-x^2+12x=0
We add all the numbers together, and all the variables
-1x^2+12x=0
a = -1; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-1)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-1}=\frac{-24}{-2} =+12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-1}=\frac{0}{-2} =0 $

See similar equations:

| 6p-4=2(4p+3) | | 5x+2=3×+14 | | 65=-x+226 | | y+1.8=3.18 | | 15x-8=3(5x+2) | | -2-8(1+7x)=-2(5+2x) | | 4x+39=x+18 | | 8n=7n=6(3n+2)-2(n+11) | | -n-4(8+4n)=16-n | | x-4=-5x+20 | | k+8=3+8k-8k | | 7(4n-3)=5-2(1-10n) | | 6(x-1=6x-1 | | x-3=2(x+9)/5 | | 9x+144=8x | | 4.9t^2+7t-250=0 | | 5x-12=5(x-5)+13 | | 6(1+9x)=-64+54x | | 2x+11=3x+9 | | 1+4x-5=4 | | 66=6(2x=3) | | 7x+40=3x+4 | | 2x-1x+3=3x-7 | | 5x-12=5(x-5)+15 | | 8=12x-12 | | 1/5e-3=11 | | 4+6m=9+7m | | 2x+4x+14=360 | | -3(w+7)=-6 | | -7+5j=-6j | | 2=18-x | | 0=3x(x+2)-9 |

Equations solver categories