If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=2+8i(2-8i)
We move all terms to the left:
0-(2+8i(2-8i))=0
We add all the numbers together, and all the variables
-(2+8i(-8i+2))+0=0
We add all the numbers together, and all the variables
-(2+8i(-8i+2))=0
We calculate terms in parentheses: -(2+8i(-8i+2)), so:We get rid of parentheses
2+8i(-8i+2)
determiningTheFunctionDomain 8i(-8i+2)+2
We multiply parentheses
-64i^2+16i+2
Back to the equation:
-(-64i^2+16i+2)
64i^2-16i-2=0
a = 64; b = -16; c = -2;
Δ = b2-4ac
Δ = -162-4·64·(-2)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{3}}{2*64}=\frac{16-16\sqrt{3}}{128} $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{3}}{2*64}=\frac{16+16\sqrt{3}}{128} $
| (X-14)+(2x+54)+(x)=180 | | 3x+x+2-x=16 | | Y/2-1=5/6y+3 | | 2x^2−7=−3 | | 4w2=8w-3 | | a=3.9a+32 | | 2400-60x=120x | | 26=w5+9 | | 4y+9y=0 | | 59=-9y+5 | | 3v-1=2v+6 | | 1(2n+4)=-14 | | 15=8z+1 | | 4=2w-16 | | 54+x+x-28=180 | | -4(0)+7x=3 | | -56=w-23 | | 7x+7=7x-3 | | a/12-3/4=2/3 | | 3(2n+4)=-6 | | 5x+75=125 | | x/5+21=16 | | x/5+13=1 | | c*4/3=16 | | x/5+15=4 | | 8(5x-2)=5(2-3x) | | k/7.8+49.1=26.4 | | -5(1-5x)+5)-(-8x-2)=-4x-8x | | D((D+7)^(3))(D^(2)+1)(D^(2)+2D-8)y=0 | | -3(4x+3(+4(6x+1(=43 | | 5.3(8.8r-1.9)=59 | | 4x-1=3x+3=20-x |