0=3(x2+7x-15)

Simple and best practice solution for 0=3(x2+7x-15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=3(x2+7x-15) equation:



0=3(x2+7x-15)
We move all terms to the left:
0-(3(x2+7x-15))=0
We add all the numbers together, and all the variables
-(3(+x^2+7x-15))+0=0
We add all the numbers together, and all the variables
-(3(+x^2+7x-15))=0
We calculate terms in parentheses: -(3(+x^2+7x-15)), so:
3(+x^2+7x-15)
We multiply parentheses
3x^2+21x-45
Back to the equation:
-(3x^2+21x-45)
We get rid of parentheses
-3x^2-21x+45=0
a = -3; b = -21; c = +45;
Δ = b2-4ac
Δ = -212-4·(-3)·45
Δ = 981
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{981}=\sqrt{9*109}=\sqrt{9}*\sqrt{109}=3\sqrt{109}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{109}}{2*-3}=\frac{21-3\sqrt{109}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{109}}{2*-3}=\frac{21+3\sqrt{109}}{-6} $

See similar equations:

| x/7-25=6 | | 6.40+4.80f=128.15 | | 5x^2-11=19 | | 5t=4=29 | | 6m+100=1.335 | | 5x-9=3(x+1) | | 2/5x=12/3 | | 12y+19=67 | | Y-14x=3 | | 6-7j=-7j+6 | | 6x-18=1x+7 | | 44=4×m | | 5x+@=5x-2 | | 3t-11=22 | | 9a=81 | | 4(5n+3)=9(5n-7) | | 10(1.5)3x=80 | | 8y=29-9 | | 87–5b=47 | | |11x+29|=|7x+41| | | 0.3(2y-5)-0.2y=0.5 | | x^2+32x+236=0 | | 0=x^2+32x+236 | | 4(n-2)+5n=19 | | 11f(6.40+4.80)=128.15 | | –20y=4)+8y+216 | | 3.5=1/2(x-1.5) | | 4.56=0.6t | | 8y=11/7 | | 5e+e=5e+8 | | 8d+3D+5d+5d+4d=50 | | n/5=125 |

Equations solver categories