0=50000(2t-1)(t-5)

Simple and best practice solution for 0=50000(2t-1)(t-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=50000(2t-1)(t-5) equation:



0=50000(2t-1)(t-5)
We move all terms to the left:
0-(50000(2t-1)(t-5))=0
We add all the numbers together, and all the variables
-(50000(2t-1)(t-5))=0
We multiply parentheses ..
-(50000(+2t^2-10t-1t+5))=0
We calculate terms in parentheses: -(50000(+2t^2-10t-1t+5)), so:
50000(+2t^2-10t-1t+5)
We multiply parentheses
100000t^2-500000t-50000t+250000
We add all the numbers together, and all the variables
100000t^2-550000t+250000
Back to the equation:
-(100000t^2-550000t+250000)
We get rid of parentheses
-100000t^2+550000t-250000=0
a = -100000; b = 550000; c = -250000;
Δ = b2-4ac
Δ = 5500002-4·(-100000)·(-250000)
Δ = 202500000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{202500000000}=450000$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(550000)-450000}{2*-100000}=\frac{-1000000}{-200000} =+5 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(550000)+450000}{2*-100000}=\frac{-100000}{-200000} =1/2 $

See similar equations:

| 20=10(9+c) | | 4x+(-13)=9x+(-5) | | 60+6c=78 | | 10h+6=10 | | -3(5x-3)=-15+9 | | e9^(9X)=246 | | 4=6-t | | e9^(9X)=256 | | 6x-6=5x*11 | | 13=n=5 | | 196t+196−t3−t2=0 | | 3x-3+2x=–7x–9 | | -5=f/2 | | Y=2x-6x+10 | | h+3=13 | | 11=-7+b | | -7s+4=-9-7s | | -5u=3u-8u | | 3=5+2(3+4x) | | 3x-3+2x=1–7x–9 | | -10(s2)=-62 | | 2x-3=18+x | | 14x-13=11+2 | | X-5+x+145=360 | | 7(9=12a)= | | 5(t4)=-5 | | 4/y+8=6/y-6 | | 5x-(9x+5)=4x-45 | | 3x+8=70 | | 10x-5x=6x5 | | .100=x-6(0+.0102) | | 21=7+31t-16t^2 |

Equations solver categories