0=5b(b-7)-4(3+2b)

Simple and best practice solution for 0=5b(b-7)-4(3+2b) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=5b(b-7)-4(3+2b) equation:



0=5b(b-7)-4(3+2b)
We move all terms to the left:
0-(5b(b-7)-4(3+2b))=0
We add all the numbers together, and all the variables
-(5b(b-7)-4(2b+3))+0=0
We add all the numbers together, and all the variables
-(5b(b-7)-4(2b+3))=0
We calculate terms in parentheses: -(5b(b-7)-4(2b+3)), so:
5b(b-7)-4(2b+3)
We multiply parentheses
5b^2-35b-8b-12
We add all the numbers together, and all the variables
5b^2-43b-12
Back to the equation:
-(5b^2-43b-12)
We get rid of parentheses
-5b^2+43b+12=0
a = -5; b = 43; c = +12;
Δ = b2-4ac
Δ = 432-4·(-5)·12
Δ = 2089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-\sqrt{2089}}{2*-5}=\frac{-43-\sqrt{2089}}{-10} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+\sqrt{2089}}{2*-5}=\frac{-43+\sqrt{2089}}{-10} $

See similar equations:

| -75=-5(-5a+3) | | −4x+3=−6 | | m+1/3=2/3 | | -75=5(-5a+3) | | 3-2x=1/5(10x-15) | | 1/2=n/60 | | P^2+2p-44=-9 | | 14/5+64/9=m | | 3x-5=8x+7-3x | | 3/2=n/100 | | 21/3=n+4/3 | | 9a+3=3(3a+1) | | 9a+48+6a+50=90 | | 5=6)q-5)-19 | | 13=-w-14 | | -2x+5=6x-11 | | 3-(2x-4)=2(3x+1) | | 11(p-3)=-3(8p+11) | | 75=-8x-21 | | 75=-8x-2+ | | x+1/5=-48/10 | | 24=14b | | -6y-4y+2y=130 | | 4(2x+1)+6=-8+5(3x-2) | | 32^7-3x=2^x2-30x+89 | | A=1/23b^2 | | x3x=-8 | | X/3+x/9-16=8 | | 4x-19-3x=-2 | | 8(-8x-11)=-408 | | 50-6y-4y+2y=180 | | 2.5x+8=6.5x-4 |

Equations solver categories