0=7(x+2,5)(x-17)

Simple and best practice solution for 0=7(x+2,5)(x-17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=7(x+2,5)(x-17) equation:



0=7(x+2.5)(x-17)
We move all terms to the left:
0-(7(x+2.5)(x-17))=0
We add all the numbers together, and all the variables
-(7(x+2.5)(x-17))=0
We multiply parentheses ..
-(7(+x^2-17x+2.5x-42.5))=0
We calculate terms in parentheses: -(7(+x^2-17x+2.5x-42.5)), so:
7(+x^2-17x+2.5x-42.5)
We multiply parentheses
7x^2-119x+14x-297.5
We add all the numbers together, and all the variables
7x^2-105x-297.5
Back to the equation:
-(7x^2-105x-297.5)
We get rid of parentheses
-7x^2+105x+297.5=0
a = -7; b = 105; c = +297.5;
Δ = b2-4ac
Δ = 1052-4·(-7)·297.5
Δ = 19355
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19355}=\sqrt{49*395}=\sqrt{49}*\sqrt{395}=7\sqrt{395}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-7\sqrt{395}}{2*-7}=\frac{-105-7\sqrt{395}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+7\sqrt{395}}{2*-7}=\frac{-105+7\sqrt{395}}{-14} $

See similar equations:

| 18g/2.4=5 | | (-3+4)(-x)=27+x | | 89-3f=5 | | 12x=684 | | 20h=10h+50 | | 2/3(6x-3)=3x | | -10+-5d=-55 | | 8x+3-10x=-2x-1 | | 4x-5x+3x-x+2x-7x=-4x | | n/4-3=18 | | 6(s-78)=78 | | -7(n-90)=-63 | | 14-10n=-2n | | 20=10(j-90) | | v/8-45=-42 | | 8x–12x+18=-22 | | x+57+x+67=180 | | 14-20=8x | | 15h=16 | | 2(b-46)=94 | | 5t+3.50t=3(2t+$2.75) | | -60=n/9-68 | | h-15=16 | | 6-4x=-4^x | | X^2-4x=5x+11 | | 4=s+10/5 | | 9x-17=4x+28=180 | | r/9-85=-76 | | -7(h-91)=-35 | | 10x+11=12x-5 | | -18-12x=8x-144 | | 500=(3.14)(r^2)(13) |

Equations solver categories