If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=7x-4x(2x-9)
We move all terms to the left:
0-(7x-4x(2x-9))=0
We add all the numbers together, and all the variables
-(7x-4x(2x-9))=0
We calculate terms in parentheses: -(7x-4x(2x-9)), so:We get rid of parentheses
7x-4x(2x-9)
We multiply parentheses
-8x^2+7x+36x
We add all the numbers together, and all the variables
-8x^2+43x
Back to the equation:
-(-8x^2+43x)
8x^2-43x=0
a = 8; b = -43; c = 0;
Δ = b2-4ac
Δ = -432-4·8·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-43}{2*8}=\frac{0}{16} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+43}{2*8}=\frac{86}{16} =5+3/8 $
| H(t)=1250(0.865)^3 | | 5×9=t | | (3(x+1))/4=2x-3 | | 30*x=50*(70*x) | | 49=14+t | | 7a+14=70 | | X^2+2x/7-9x/14=3/2 | | 40=40+m | | 43⋅x2⋅(4x)−2=43⋅x2⋅(4x)−2= | | 11^x-4=121^× | | F(t)=475(0.5)^3 | | 24+y=91 | | 2(x+1)/5=12 | | 0.04(x+6)=0.02(2x+8)+0.08 | | (-4x+2)-(-3x-5)=3 | | 2(x+4)=3x-18 | | -0.10(21)+0.70=0.05(x-16) | | 9x+10+15x-2=180 | | F(x)=x^+7 | | 5/6m=2-11/12m | | 2x-2(x+4)+4=6x | | 1/4(40-8x)=19x+25x | | X3-x2-48=0 | | 0.13y+0.07(y+4000)=1880 | | 6x+28x-14=0 | | 5(x+5)+2=8x-3(x-5) | | 3x+17/7+x+14/5=9 | | 9p+58=4 | | 8/3r-9/4r=-5/2 | | 7+4(5x-4)=7-5(2x+1) | | 3(x-1)+9=5x-2(-2+x) | | C+b=54 |