1(n+1)2(n+1)3(n+3)=80

Simple and best practice solution for 1(n+1)2(n+1)3(n+3)=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1(n+1)2(n+1)3(n+3)=80 equation:


Simplifying
1(n + 1) * 2(n + 1) * 3(n + 3) = 80

Reorder the terms:
1(1 + n) * 2(n + 1) * 3(n + 3) = 80

Reorder the terms:
1(1 + n) * 2(1 + n) * 3(n + 3) = 80

Reorder the terms:
1(1 + n) * 2(1 + n) * 3(3 + n) = 80

Reorder the terms for easier multiplication:
1 * 2 * 3(1 + n)(1 + n)(3 + n) = 80

Multiply 1 * 2
2 * 3(1 + n)(1 + n)(3 + n) = 80

Multiply 2 * 3
6(1 + n)(1 + n)(3 + n) = 80

Multiply (1 + n) * (1 + n)
6(1(1 + n) + n(1 + n))(3 + n) = 80
6((1 * 1 + n * 1) + n(1 + n))(3 + n) = 80
6((1 + 1n) + n(1 + n))(3 + n) = 80
6(1 + 1n + (1 * n + n * n))(3 + n) = 80
6(1 + 1n + (1n + n2))(3 + n) = 80

Combine like terms: 1n + 1n = 2n
6(1 + 2n + n2)(3 + n) = 80

Multiply (1 + 2n + n2) * (3 + n)
6(1(3 + n) + 2n * (3 + n) + n2(3 + n)) = 80
6((3 * 1 + n * 1) + 2n * (3 + n) + n2(3 + n)) = 80
6((3 + 1n) + 2n * (3 + n) + n2(3 + n)) = 80
6(3 + 1n + (3 * 2n + n * 2n) + n2(3 + n)) = 80
6(3 + 1n + (6n + 2n2) + n2(3 + n)) = 80
6(3 + 1n + 6n + 2n2 + (3 * n2 + n * n2)) = 80
6(3 + 1n + 6n + 2n2 + (3n2 + n3)) = 80

Combine like terms: 1n + 6n = 7n
6(3 + 7n + 2n2 + 3n2 + n3) = 80

Combine like terms: 2n2 + 3n2 = 5n2
6(3 + 7n + 5n2 + n3) = 80
(3 * 6 + 7n * 6 + 5n2 * 6 + n3 * 6) = 80
(18 + 42n + 30n2 + 6n3) = 80

Solving
18 + 42n + 30n2 + 6n3 = 80

Solving for variable 'n'.

Reorder the terms:
18 + -80 + 42n + 30n2 + 6n3 = 80 + -80

Combine like terms: 18 + -80 = -62
-62 + 42n + 30n2 + 6n3 = 80 + -80

Combine like terms: 80 + -80 = 0
-62 + 42n + 30n2 + 6n3 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-31 + 21n + 15n2 + 3n3) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-31 + 21n + 15n2 + 3n3)' equal to zero and attempt to solve: Simplifying -31 + 21n + 15n2 + 3n3 = 0 Solving -31 + 21n + 15n2 + 3n3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| x+8y=-9 | | -3x-6y=15 | | x=.0002x^2-.316(750)+127.9 | | .666666x-7=11 | | 3b+(b-3)= | | 127+6x+2+x=180 | | 7a+13+3a=27-20a+6 | | 134=-3x-7(3x-2) | | 1(n+1)2(n+2)3(n+3)=80 | | 2x+8+5x-10+5x-10=180 | | 5x+64=6x-14 | | 2.5z=13.9 | | -7(r+4)+5(4r-2)=40 | | 2n(q-4x)=6m | | Log[5](x+12)+Log[5](x-12)=2 | | -125*-2= | | 54-4x=-177+7x | | -5x^2=6 | | 24=-7(6b+8) | | 7(2+3x)=182 | | C=3.14*21 | | x=.0002x^2-.316x+127.9 | | 3(m-1)=6(m+2) | | 12=n/7 | | 80+25m=50+15m | | h+-538=-799 | | 12=3z+8 | | 41+10x+41+20x=640 | | 498=b+-39 | | M/9=9 | | 33=-7x | | 80=b+50 |

Equations solver categories