1(n+1)2(n+2)3(n+3)=80

Simple and best practice solution for 1(n+1)2(n+2)3(n+3)=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1(n+1)2(n+2)3(n+3)=80 equation:


Simplifying
1(n + 1) * 2(n + 2) * 3(n + 3) = 80

Reorder the terms:
1(1 + n) * 2(n + 2) * 3(n + 3) = 80

Reorder the terms:
1(1 + n) * 2(2 + n) * 3(n + 3) = 80

Reorder the terms:
1(1 + n) * 2(2 + n) * 3(3 + n) = 80

Reorder the terms for easier multiplication:
1 * 2 * 3(1 + n)(2 + n)(3 + n) = 80

Multiply 1 * 2
2 * 3(1 + n)(2 + n)(3 + n) = 80

Multiply 2 * 3
6(1 + n)(2 + n)(3 + n) = 80

Multiply (1 + n) * (2 + n)
6(1(2 + n) + n(2 + n))(3 + n) = 80
6((2 * 1 + n * 1) + n(2 + n))(3 + n) = 80
6((2 + 1n) + n(2 + n))(3 + n) = 80
6(2 + 1n + (2 * n + n * n))(3 + n) = 80
6(2 + 1n + (2n + n2))(3 + n) = 80

Combine like terms: 1n + 2n = 3n
6(2 + 3n + n2)(3 + n) = 80

Multiply (2 + 3n + n2) * (3 + n)
6(2(3 + n) + 3n * (3 + n) + n2(3 + n)) = 80
6((3 * 2 + n * 2) + 3n * (3 + n) + n2(3 + n)) = 80
6((6 + 2n) + 3n * (3 + n) + n2(3 + n)) = 80
6(6 + 2n + (3 * 3n + n * 3n) + n2(3 + n)) = 80
6(6 + 2n + (9n + 3n2) + n2(3 + n)) = 80
6(6 + 2n + 9n + 3n2 + (3 * n2 + n * n2)) = 80
6(6 + 2n + 9n + 3n2 + (3n2 + n3)) = 80

Combine like terms: 2n + 9n = 11n
6(6 + 11n + 3n2 + 3n2 + n3) = 80

Combine like terms: 3n2 + 3n2 = 6n2
6(6 + 11n + 6n2 + n3) = 80
(6 * 6 + 11n * 6 + 6n2 * 6 + n3 * 6) = 80
(36 + 66n + 36n2 + 6n3) = 80

Solving
36 + 66n + 36n2 + 6n3 = 80

Solving for variable 'n'.

Reorder the terms:
36 + -80 + 66n + 36n2 + 6n3 = 80 + -80

Combine like terms: 36 + -80 = -44
-44 + 66n + 36n2 + 6n3 = 80 + -80

Combine like terms: 80 + -80 = 0
-44 + 66n + 36n2 + 6n3 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-22 + 33n + 18n2 + 3n3) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-22 + 33n + 18n2 + 3n3)' equal to zero and attempt to solve: Simplifying -22 + 33n + 18n2 + 3n3 = 0 Solving -22 + 33n + 18n2 + 3n3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 2x+8+5x-10+5x-10=180 | | 5x+64=6x-14 | | 2.5z=13.9 | | -7(r+4)+5(4r-2)=40 | | 2n(q-4x)=6m | | Log[5](x+12)+Log[5](x-12)=2 | | -125*-2= | | 54-4x=-177+7x | | -5x^2=6 | | 24=-7(6b+8) | | 7(2+3x)=182 | | C=3.14*21 | | x=.0002x^2-.316x+127.9 | | 3(m-1)=6(m+2) | | 12=n/7 | | 80+25m=50+15m | | h+-538=-799 | | 12=3z+8 | | 41+10x+41+20x=640 | | 498=b+-39 | | M/9=9 | | 33=-7x | | 80=b+50 | | 13d=216 | | s=v+at | | 5(6+b)= | | X(2x-4)=240 | | 2d-7=3(d-9) | | t^3-9t^2+24t+1=0 | | 1-(-x+2)=2(6-x)-1 | | 2(d-7)=3(d-9) | | 3x+50=5x-14 |

Equations solver categories