1+(1/3)x=80

Simple and best practice solution for 1+(1/3)x=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+(1/3)x=80 equation:



1+(1/3)x=80
We move all terms to the left:
1+(1/3)x-(80)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)x+1-80=0
We add all the numbers together, and all the variables
(+1/3)x-79=0
We multiply parentheses
x^2-79=0
a = 1; b = 0; c = -79;
Δ = b2-4ac
Δ = 02-4·1·(-79)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{79}}{2*1}=\frac{0-2\sqrt{79}}{2} =-\frac{2\sqrt{79}}{2} =-\sqrt{79} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{79}}{2*1}=\frac{0+2\sqrt{79}}{2} =\frac{2\sqrt{79}}{2} =\sqrt{79} $

See similar equations:

| W=2(3w-3)-(w+5) | | 2a-3(2a-3)=45 | | 3(12x+12)-25=4(+2x)+30 | | -5x+4x=x | | x+1/3x=80 | | -3x-3(-5x-16)=3 | | 6x-16=2(2x-2) | | q/3-13=-9 | | x^2=1/27 | | y+6=1.80 | | 8.6x2.2(2x-5)=54 | | -5=m/4-8 | | 3x+(10-x)=20 | | 6x-16/2+2=2x | | -5×r/20=-4 | | 6^-2n=6^3n | | (25-x)-3x=1 | | 4=w/3+2 | | 2(5x+5)=-3(4x-5)+5x | | 6m+2.3=–9.7 | | t/4+-4=0 | | 25^n+2=5^n+1 | | 4y-6(y+2)=14+2y | | 25=-5+5x | | 16=4(2y-1) | | 0=-16t^2+630 | | 2p+2=14 | | 2x-9/6+2/3=5×/6 | | 1/10y-6=-17 | | 7n+3=34 | | 27=3^x | | 1=-5+3w |

Equations solver categories