1+3(-4z+7)=(z-8)-4

Simple and best practice solution for 1+3(-4z+7)=(z-8)-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+3(-4z+7)=(z-8)-4 equation:


Simplifying
1 + 3(-4z + 7) = (z + -8) + -4

Reorder the terms:
1 + 3(7 + -4z) = (z + -8) + -4
1 + (7 * 3 + -4z * 3) = (z + -8) + -4
1 + (21 + -12z) = (z + -8) + -4

Combine like terms: 1 + 21 = 22
22 + -12z = (z + -8) + -4

Reorder the terms:
22 + -12z = (-8 + z) + -4

Remove parenthesis around (-8 + z)
22 + -12z = -8 + z + -4

Reorder the terms:
22 + -12z = -8 + -4 + z

Combine like terms: -8 + -4 = -12
22 + -12z = -12 + z

Solving
22 + -12z = -12 + z

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '-1z' to each side of the equation.
22 + -12z + -1z = -12 + z + -1z

Combine like terms: -12z + -1z = -13z
22 + -13z = -12 + z + -1z

Combine like terms: z + -1z = 0
22 + -13z = -12 + 0
22 + -13z = -12

Add '-22' to each side of the equation.
22 + -22 + -13z = -12 + -22

Combine like terms: 22 + -22 = 0
0 + -13z = -12 + -22
-13z = -12 + -22

Combine like terms: -12 + -22 = -34
-13z = -34

Divide each side by '-13'.
z = 2.615384615

Simplifying
z = 2.615384615

See similar equations:

| 1/2r | | m/n=p/q | | -v-4=3v | | 4(2x+3)-(x-2)= | | 2y/3-y/4=15 | | 2x^2+16x+32=17 | | 90x^2+84x^9+105= | | 7(2x+3)=4(x-5)-17 | | -v+12= | | X^4-18x^2+18=o | | -x^2-2x+1=9 | | x+3+7x-9=82 | | 5(y+-7)+-2y=1+-3[(4y+7)+-2(y+-3)] | | 10r-r= | | 5x^2+26x+32=0 | | 3(4x-2y)+2(x+2y)= | | 2x+11=6x-5-4x | | 11x-3=2x+9 | | 4x/3+2=5 | | -35x+12=28x+19 | | 2x^2+3((-2x+13)/3)^2-35=0 | | A+B+B+B+80+9=100 | | 4=ln(y+4) | | 4x+28x-32=0 | | 4(x-6)-6=x-14 | | 6*3/7*3*1/3/1*2/7 | | 4=Ln(y+1) | | 11/5n=4n+20 | | 6x+8=6x-13 | | -13.00+2.00x= | | ProveA+B+B+B+80+90=100 | | 0.1x+(3x+20)/5=0.5 |

Equations solver categories