1+3/10b=7/20b

Simple and best practice solution for 1+3/10b=7/20b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+3/10b=7/20b equation:



1+3/10b=7/20b
We move all terms to the left:
1+3/10b-(7/20b)=0
Domain of the equation: 10b!=0
b!=0/10
b!=0
b∈R
Domain of the equation: 20b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
3/10b-(+7/20b)+1=0
We get rid of parentheses
3/10b-7/20b+1=0
We calculate fractions
60b/200b^2+(-70b)/200b^2+1=0
We multiply all the terms by the denominator
60b+(-70b)+1*200b^2=0
Wy multiply elements
200b^2+60b+(-70b)=0
We get rid of parentheses
200b^2+60b-70b=0
We add all the numbers together, and all the variables
200b^2-10b=0
a = 200; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·200·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*200}=\frac{0}{400} =0 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*200}=\frac{20}{400} =1/20 $

See similar equations:

| 1+3/10b=7/10b | | -(a-9)=a3+17 | | -2=48+8y | | 10^x-30(10^-x)=7 | | 3(3y+1)+4y=-28 | | 2(3x-4)=2x-6 | | x.x8=7 | | x.7x=63 | | 21=p–7 | | 2x4+2+10=180 | | 4y=-12-6 | | 3^(x+3)-5^(x-1)=0 | | 3^(x+3)-(5^(x-1))=0 | | 3^(x+3)=5^(x-1) | | 19x-7=6x+19 | | 6=-3y+15 | | 4x+(x=10)=180 | | k/12+3=19 | | 6=3y+15 | | -12=-3y+15 | | –5m=–6−7m | | 11/6x=3x/4 | | -0.10(34)+0.60x=0.05(x-2) | | 100=1.07×x | | -12=3y+15 | | 140x=667 | | 110.25=-16x^2+84x | | −$1,000,000+∑t=160​ (1+0.0064)6025,00060​ ​ | | 8x−24=60+6x | | -4n–5=7 | | 0,2=(3x-1)/2 | | 21=42-7k |

Equations solver categories