If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+s2=9
We move all terms to the left:
1+s2-(9)=0
We add all the numbers together, and all the variables
s^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $
| -18s-12=13-5-17s | | -5+5t=4t | | 4.1=2.7(1+r)^45 | | 7j+9=9-8j | | 7.2-17.7y=19.6-16.9y | | 13x+33+5x+3=180 | | -9-h=7+h | | 5+9u=8u | | x+2+153=0° | | 4b=5b-9 | | 20y-15=-y+18-12y | | -16+2y=2 | | x+2+153=180° | | -2(x-8)-3=13 | | 2x+13+5x-8=180 | | 6+q=3q | | 3b+-6=8+-4b | | -1-17t=-20-18t | | 0.25(x+2)=9.5 | | 5(3x+26=2(x+39 | | 4u-10=5u | | 2x-5/11=18/5 | | -4(v-7)=-2v+30 | | -105=-7n+7 | | -17.8p-4.52=0.43-18.4p-15.93 | | 8x-10=120 | | -2(3t-3)+4t=3t-7 | | 3r-36=-15 | | n-18.6=7 | | x/2=15/90 | | 0.70=84p | | -4+8h=9h |