If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.250=c2
We move all terms to the left:
1.250-(c2)=0
We add all the numbers together, and all the variables
-1c^2+1.25=0
a = -1; b = 0; c = +1.25;
Δ = b2-4ac
Δ = 02-4·(-1)·1.25
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{5}}{2*-1}=\frac{0-\sqrt{5}}{-2} =-\frac{\sqrt{}}{-2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{5}}{2*-1}=\frac{0+\sqrt{5}}{-2} =\frac{\sqrt{}}{-2} $
| X/8=12x= | | (x-1)-(x+1)=0 | | 4u=516 | | -9(u+6)=4u+37 | | 4t+6+4t=10+4t | | X=17.50-(4-x) | | 7r+6=3r+10 | | X=17.50-(3-x) | | x2–x–46=3x–1 | | x5-6+7{1+1}=5 | | -9-9+y=9+4y | | 2(x+13)^3/2=54 | | 2(2x*4)=8(x-) | | x=139° | | 2+n=1 | | X=17.50/3y | | 6+h=1+2h | | 3x+7+7+45=180 | | 12+z=9+7 | | x=±2 | | -4h+10-6h=-8h-10 | | 29.3=c/2+7.3 | | 3.2=n/14 | | 17=n+(-13) | | 2z+1=-z+10 | | d/6—3=5 | | 2/16=3.5/x | | (1)/(4)(8x+56)=20 | | 15(3m+1)=60 | | 9+2y-1=-4-10 | | -2+7d=7d-2 | | 152=-19k |