1-1/2x-20=4x-2

Simple and best practice solution for 1-1/2x-20=4x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1-1/2x-20=4x-2 equation:



1-1/2x-20=4x-2
We move all terms to the left:
1-1/2x-20-(4x-2)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
-1/2x-(4x-2)-19=0
We get rid of parentheses
-1/2x-4x+2-19=0
We multiply all the terms by the denominator
-4x*2x+2*2x-19*2x-1=0
Wy multiply elements
-8x^2+4x-38x-1=0
We add all the numbers together, and all the variables
-8x^2-34x-1=0
a = -8; b = -34; c = -1;
Δ = b2-4ac
Δ = -342-4·(-8)·(-1)
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{281}}{2*-8}=\frac{34-2\sqrt{281}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{281}}{2*-8}=\frac{34+2\sqrt{281}}{-16} $

See similar equations:

| 8d+4+6d+8=90 | | y2=14=50 | | 6w=77-7w | | 15+(83-32+x)/2=50 | | 15+(83-32+x)/2=100 | | x+41/7=6 | | .5m+3=3.5m11 | | 3p^2-8p-60=0 | | 10(3x+2)=7(5x+4) | | 2(4^x-1)=128 | | 1152=(2w+4)w(18-w) | | 5/2=c/8 | | 25d+14=64 | | 45/7x-33/7=91/7 | | y=315.000(1.02)^20 | | a+0.7=8 | | 32-4=2(a+4 | | -y/2=52 | | 25+k+4(1/4=37 | | 25+k+4(1/4)=2.5 | | 30x=100.000 | | 16.36+x=39.75 | | 1+x=6-2x | | 7+2y=12y+23 | | 10x+9-3x=44 | | 2x+6-3=9 | | 5x-7+2=10 | | 3(29)+23=y | | 68.9257(x)+70.908(1-x)=69.72 | | 8x+6+60=90 | | 2x+6+42=90 | | 4x-7+3x-15=90 |

Equations solver categories