1-4/7x=23+x

Simple and best practice solution for 1-4/7x=23+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1-4/7x=23+x equation:



1-4/7x=23+x
We move all terms to the left:
1-4/7x-(23+x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
We add all the numbers together, and all the variables
-4/7x-(x+23)+1=0
We get rid of parentheses
-4/7x-x-23+1=0
We multiply all the terms by the denominator
-x*7x-23*7x+1*7x-4=0
Wy multiply elements
-7x^2-161x+7x-4=0
We add all the numbers together, and all the variables
-7x^2-154x-4=0
a = -7; b = -154; c = -4;
Δ = b2-4ac
Δ = -1542-4·(-7)·(-4)
Δ = 23604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23604}=\sqrt{4*5901}=\sqrt{4}*\sqrt{5901}=2\sqrt{5901}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-154)-2\sqrt{5901}}{2*-7}=\frac{154-2\sqrt{5901}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-154)+2\sqrt{5901}}{2*-7}=\frac{154+2\sqrt{5901}}{-14} $

See similar equations:

| 4(3+x)=3(4+x) | | 2(x-1)=16x= | | 18=11x-15 | | 7g+4=6g+9 | | 4g+5=g-4 | | 5g-2=39+11 | | 40t-4.44t^2=90 | | 40t-4t^2=100 | | 3p-2=p+7 | | 7x+9=5x+18 | | 6g-4=g+16 | | 4p-1=2p+4 | | 40t-4.44t^2=50 | | x¹=100 | | x²=100 | | 9x=108−3x | | x⁴=10000 | | x⁴=1000 | | x⁴=10 | | 3^2^x+3^x-30=0 | | 1+2a-10-3a+18-4a=6=9a+1+2+3a | | a+2=102 | | x²+3=103 | | x¹=10 | | X=36+-0.2y | | 3-(n+6)=63 | | 100/3499=x/1227 | | 3499.27/100=1227.30/x | | 5x+2=3x8 | | 2(n=4)=50 | | -2x-8=-4x+2 | | 0.98*x-4*0.98=x*0.95 |

Equations solver categories