If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-9x^2=0
a = -9; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-9)·1
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*-9}=\frac{-6}{-18} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*-9}=\frac{6}{-18} =-1/3 $
| X+.2x=159 | | x-(1.1x)(-1/x)=20.88 | | 6/9(2-t)=t/1.5 | | (11/10)x-(1/x)=0 | | 4.1g+2=1.1g+17. | | 2(x+3)=4(4.x) | | 1.66666667x+0.3333333x=5.33333333+2.66666667x | | F(x)=2x^-6x=4 | | -7+3x=2x+17+5 | | 7n=61+2 | | (200/10-(27/x))=1.1x | | 1.1x=200/10-27/x | | 1.1p=200/10-27/p | | 4m+6.6=44.25 | | 4.2=2u-2.2 | | 8(x-2)-3(1-x)=9(x+2)+1= | | (–3d+5)(–4)= | | .5n^2-5n-153=0 | | (3x-32)=(2x+21) | | (2x-29)=95 | | x+5x-3=3 | | t+25=55 | | 3-+(5x-5)+(3x+55)=180 | | t-25=55 | | 4(3n+2)-5=0 | | 20y=12 | | 7/3z-14/15=7/15 | | 5j+-3j-3j=-11 | | 42=x+15 | | 2a-12/3=4a | | 12g=26 | | 4x+50=9x+3 |