1.04=(1+x)+x(1+x)

Simple and best practice solution for 1.04=(1+x)+x(1+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.04=(1+x)+x(1+x) equation:



1.04=(1+x)+x(1+x)
We move all terms to the left:
1.04-((1+x)+x(1+x))=0
We add all the numbers together, and all the variables
-((x+1)+x(x+1))+1.04=0
We calculate terms in parentheses: -((x+1)+x(x+1)), so:
(x+1)+x(x+1)
We multiply parentheses
x^2+(x+1)+x
We get rid of parentheses
x^2+x+x+1
We add all the numbers together, and all the variables
x^2+2x+1
Back to the equation:
-(x^2+2x+1)
We get rid of parentheses
-x^2-2x-1+1.04=0
We add all the numbers together, and all the variables
-1x^2-2x+0.04=0
a = -1; b = -2; c = +0.04;
Δ = b2-4ac
Δ = -22-4·(-1)·0.04
Δ = 4.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-\sqrt{4.16}}{2*-1}=\frac{2-\sqrt{4.16}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+\sqrt{4.16}}{2*-1}=\frac{2+\sqrt{4.16}}{-2} $

See similar equations:

| x^2+8x=140 | | 5x-33=12x+4 | | 4xX=18 | | 10x2=66x+28 | | 4(5x+1)=1/5(20x+16)+16 | | d÷(2d+1)=1÷3 | | d/(2d+1)=1/3 | | F(-5)=-2x+7 | | 500*12=n | | 5-3c=8+3(4c-1) | | (2m+3)(2m-3)=0 | | 0=0.2x^2–0.4x–0.6 | | Y=-0.2x^2-0.4x-0.6 | | 1/3a=40+14 | | 3(2^3w+4)=5(4^w−1) | | -6=b/18,b= | | 8x²+25x-200=0 | | 4x+6=9x/2 | | 2/t-3t/4=7 | | 35-2x=23 | | -1=6+0.5x | | 40+x=x-8-4x | | s*8=40 | | −r+8(−5r−2)=0 | | (x)/(10)+6=8 | | 10=11-(-3+x) | | 4x-288x^-2=0 | | a+(-1/2)=-5.5 | | 7(p-3)=11 | | a-5/1=1.7 | | 4x+1/x+1-3=12/x²-1 | | -n/2=6 |

Equations solver categories