If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.43=48t^2
We move all terms to the left:
1.43-(48t^2)=0
a = -48; b = 0; c = +1.43;
Δ = b2-4ac
Δ = 02-4·(-48)·1.43
Δ = 274.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{274.56}}{2*-48}=\frac{0-\sqrt{274.56}}{-96} =-\frac{\sqrt{}}{-96} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{274.56}}{2*-48}=\frac{0+\sqrt{274.56}}{-96} =\frac{\sqrt{}}{-96} $
| 15=2x(0.5) | | 5(3w+2)/2=6 | | 7(-2+6x)=196 | | 32x2+18x-17=0 | | 2m=4m+6 | | -21+6=-3t | | 2/3(9-6y)=4(y+3) | | 8−8z=-9z | | 9x+6/18=20x+4/3 | | 〖32x〗^2+18x-17=0 | | -8+6c=7c | | X(7x-6)=12 | | x/3+3=-4 | | -3=4^2-x-3 | | 3x+25+12x=8x-18 | | 15=0.5(2)x | | -3+8m=53 | | 4r-1-3=8 | | X+(4x-11)=29 | | 3x+15=x+10.5 | | 7+3x=9+× | | 8m+-3=53 | | -2(2t+7)=2 | | 8.5x=22+6x | | 3/60=x/5 | | y+15=30,y=20 | | 3x+25+12x=8x+1 | | 2(1x-2)=-8 | | 5-4+7x+1=7x+8 | | 2x+3/3=6/x-1 | | 5-4+7x+1=7x+7 | | 2÷3(9-6y)=4(y+3) |