1.4x-3=3/8x+4

Simple and best practice solution for 1.4x-3=3/8x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.4x-3=3/8x+4 equation:



1.4x-3=3/8x+4
We move all terms to the left:
1.4x-3-(3/8x+4)=0
Domain of the equation: 8x+4)!=0
x∈R
We get rid of parentheses
1.4x-3/8x-4-3=0
We multiply all the terms by the denominator
(1.4x)*8x-4*8x-3*8x-3=0
We add all the numbers together, and all the variables
(+1.4x)*8x-4*8x-3*8x-3=0
We multiply parentheses
8x^2-4*8x-3*8x-3=0
Wy multiply elements
8x^2-32x-24x-3=0
We add all the numbers together, and all the variables
8x^2-56x-3=0
a = 8; b = -56; c = -3;
Δ = b2-4ac
Δ = -562-4·8·(-3)
Δ = 3232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3232}=\sqrt{16*202}=\sqrt{16}*\sqrt{202}=4\sqrt{202}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4\sqrt{202}}{2*8}=\frac{56-4\sqrt{202}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4\sqrt{202}}{2*8}=\frac{56+4\sqrt{202}}{16} $

See similar equations:

| 6x^​2​​−30x−84=0 | | -27-2y+16=-23y+61+3y | | 8(3/4s)-8(7/4)=8(s/8)+8(3/4) | | (-5x+10)/(x-2)=0 | | 4059-7127-x=3128 | | 5x+3=1.5(2x-8) | | (-5x+10)/x-2=0 | | 4059+7127-x=3128 | | 5x3=1/2(2x-8) | | x+27=5x+6 | | 7x+25=66 | | 2(x-8)+27=4x-5 | | 16/25=x2 | | 1.8+0.4x=0.7x-5.4 | | 20.00+5.50h=11.00+6.25h | | (-5(x)+2)-(-5(2)+2/x-2=0 | | 2x–10=-20 | | 4x-1/2x=8 | | 2x√+3x√−x√=8 | | 2(m+5)=2 | | -5(2x-5)=2(x-10)-3 | | 9(y-2)=2(4y+5)-28 | | -2=9x-11 | | 2x+10=x-2 | | (x+37)/4=79 | | 6x-10x=24 | | -12x2+x+1=0 | | (2z-1)(8+z)=0 | | 1/2(x-2)=43+6x | | 5(2x-7)-9x=7 | | x=1.x=-4 | | 12+-3y/2=4 |

Equations solver categories