1.4z-1=2/9z+9

Simple and best practice solution for 1.4z-1=2/9z+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1.4z-1=2/9z+9 equation:



1.4z-1=2/9z+9
We move all terms to the left:
1.4z-1-(2/9z+9)=0
Domain of the equation: 9z+9)!=0
z∈R
We get rid of parentheses
1.4z-2/9z-9-1=0
We multiply all the terms by the denominator
(1.4z)*9z-9*9z-1*9z-2=0
We add all the numbers together, and all the variables
(+1.4z)*9z-9*9z-1*9z-2=0
We multiply parentheses
9z^2-9*9z-1*9z-2=0
Wy multiply elements
9z^2-81z-9z-2=0
We add all the numbers together, and all the variables
9z^2-90z-2=0
a = 9; b = -90; c = -2;
Δ = b2-4ac
Δ = -902-4·9·(-2)
Δ = 8172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8172}=\sqrt{36*227}=\sqrt{36}*\sqrt{227}=6\sqrt{227}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-6\sqrt{227}}{2*9}=\frac{90-6\sqrt{227}}{18} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+6\sqrt{227}}{2*9}=\frac{90+6\sqrt{227}}{18} $

See similar equations:

| -5(x-4)+6=26 | | -2(6x+-9)=6x | | 2/3(x−3)=1/6(7x+29)+3 | | 23(x−3)=16(7x+29)+3 | | (6x+8)/7=-10 | | (6x+8)/7=10 | | 10(x+3)-(9-4)=x-5+3 | | 19x-7=6+14x | | 0.10(66)+0.85x=0.05(x-4) | | -5(x+2)-15=16+4 | | 50x+1000=75x+500 | | x+240=590 | | 50x+100=75x+500 | | 6(x-4)-3=19x-157 | | -0.10(48)+0.40x=0.05(x-12) | | 2x^2+3x-240=0 | | 6-2x=5x-9x=2 | | -10=4+2n | | -5x+15=80 | | -6x+1=22 | | -15=-2m+3 | | 5c+1/6=2c-3 | | 2=a/5+4 | | 2/6=5/a | | -9x+1=-3 | | 5/6y+1=−1/3y+4/9 | | 5x+2=3+5x | | 4^7x=64^5x-8 | | 4x+3=7+4x | | 5/6y+1=−1/2y+1/4 | | m/3+2=5 | | 56y+1=−12y+14 |

Equations solver categories