If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5t^2-50t=0
a = 1.5; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·1.5·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*1.5}=\frac{0}{3} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*1.5}=\frac{100}{3} =33+1/3 $
| 5x+20=5x+8 | | 4t=32; | | b+2-8b=-5 | | 7-8s=9 | | 0.41y=12.3 | | 5x+8=11x-15 | | c-20=35 | | b+2-8b=5 | | y/17=-4 | | f+6=32 | | (2a+37)=69 | | v-2=22 | | 130+2.88x=300 | | h-1=2/3h+1/6 | | 12p+111=279 | | 15x3=40 | | 5y−10=35 | | 5p-6=-1 | | 12s=4; | | -2=k-20 | | 2=j-18 | | 4x=10-12 | | (13x-11)+(4x-1)=(18x-15) | | 3e+4=34 | | 17+a=3 | | 3x+6=18* | | 2x^2+5x=340 | | x+11=15; | | 7x-9=3x- | | 3x^2-240x+4600=0 | | 34=z+20 | | 4/7t10T=18 |