1/(2x+10)=-4x/(8x)

Simple and best practice solution for 1/(2x+10)=-4x/(8x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(2x+10)=-4x/(8x) equation:



1/(2x+10)=-4x/(8x)
We move all terms to the left:
1/(2x+10)-(-4x/(8x))=0
Domain of the equation: (2x+10)!=0
We move all terms containing x to the left, all other terms to the right
2x!=-10
x!=-10/2
x!=-5
x∈R
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
1/(2x+10)+4x/8x=0
We calculate fractions
8x/(16x^2+80x)+(8x^2+40x)/(16x^2+80x)=0
We multiply all the terms by the denominator
8x+(8x^2+40x)=0
We get rid of parentheses
8x^2+8x+40x=0
We add all the numbers together, and all the variables
8x^2+48x=0
a = 8; b = 48; c = 0;
Δ = b2-4ac
Δ = 482-4·8·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-48}{2*8}=\frac{-96}{16} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+48}{2*8}=\frac{0}{16} =0 $

See similar equations:

| -8r+2=-3r-6-r | | -5j-8=-4j | | X=o.25;48X-3 | | (2x-7)(5x-6)=0 | | 1/5x=30,000,000 | | 1/5x=30.000.000 | | 7c=8c-40 | | 18-3m=-5m | | 3-30+3m=5-10m-11 | | g+1=–5−2g | | c+88=97 | | 3-30+3m=-10m-11 | | 6(4)^x=90 | | 100=b+8 | | 4n-17=9n-7 | | 2(3x+4)=12x-10 | | 54=g−5 | | 3(d+–3)+4=–2 | | 9x=-2x-33 | | 12*12(10*x)*12+x*12=144 | | h−39=25 | | 8=t−51 | | 3^2x-3x-72=0 | | 3^2x+3x-72=0 | | 3(c−85)=–45 | | Y=3x^2+7x+6 | | y−36=24 | | n+5=92 | | –9(y−99)=27 | | 21+5u=-2u | | 24×12u²/2=144u² | | 3(h+7)=45 |

Equations solver categories