If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/(3x+15)-2/3x=1/(x+5)
We move all terms to the left:
1/(3x+15)-2/3x-(1/(x+5))=0
Domain of the equation: (3x+15)!=0
We move all terms containing x to the left, all other terms to the right
3x!=-15
x!=-15/3
x!=-5
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: (x+5))!=0We calculate fractions
x∈R
(3x^2*()/((3x+15)*3x*(x+5)))+(-2*(3x+15)*(x+5)))/((3x+15)*3x*(x+5)))+(-(1*(3x+15)*3x)/((3x+15)*3x*(x+5)))=0
We calculate terms in parentheses: +(3x^2*()/((3x+15)*3x*(x+5))), so:
3x^2*()/((3x+15)*3x*(x+5))
We multiply all the terms by the denominator
3x^2*()
Back to the equation:
+(3x^2*())
We calculate terms in parentheses: +(-2*(3x+15)*(x+5)))/((3x+15)*3x*(x+5)))+(-(1*(3x+15)*3x)/((3x+15)*3x*(x+5))), so:
-2*(3x+15)*(x+5)))/((3x+15)*3x*(x+5)))+(-(1*(3x+15)*3x)/((3x+15)*3x*(x+5))
We add all the numbers together, and all the variables
-2*(3x+15)*(x+5)))/((3x+15)*3x*(x+5)))+(-(1*(3x+15)*3x)/((3x+15)*3x*(x
We multiply all the terms by the denominator
-2*(3x+15)*(x+5)))+15*3x*x*((3x+5))+(-(1*3x*((3x+15)*3x)+15*3x*x*((3x
Wy multiply elements
45x^3*x-2*(3x+15)*(x+5)))+15*3x*x*((3x+5))+(-(1*3x*((3x+15)*3x)
We do not support expression: x^3
See similar equations:
| 1b=14 | | C(x)=50x+20 | | -3-8(4n-3)=-2n-39 | | -p=-3p-2 | | x=50+50-25*0+2+2 | | E=-2.4t+75E | | 2(1-7)a=38-2a | | 3q-5=-14 | | -3(-8+5x)-4=20-x | | 1/3(x+5)-2/3x=1/(x+5) | | -2x-3=1# | | 8x+9=159 | | 3(x-4)=-18+6x | | 4(a+3)=2a+63 | | 0.5x=4-3 | | 100+2m=184 | | 6(3x+1)+2(8x-1)=100 | | 0.5x=6-3 | | 5x+12-6x=5x-48x | | 0.5x=7-3 | | 5×m=36 | | 5b+5b=0 | | 2.5x-2=4.5x-2 | | 4m+8+7m=2.5 | | 6t8=50 | | 12v=20+7v | | 5m–9+4m= | | -5(n+5)+7n=-28+n | | 0.10+0.05(d-5)=2.15+5 | | 5b+2=12b+8 | | 4u+5=–9+6u | | 0,25x–24=1–0,75x |