1/(8)x+56=4x+140

Simple and best practice solution for 1/(8)x+56=4x+140 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(8)x+56=4x+140 equation:



1/(8)x+56=4x+140
We move all terms to the left:
1/(8)x+56-(4x+140)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We get rid of parentheses
1/8x-4x-140+56=0
We multiply all the terms by the denominator
-4x*8x-140*8x+56*8x+1=0
Wy multiply elements
-32x^2-1120x+448x+1=0
We add all the numbers together, and all the variables
-32x^2-672x+1=0
a = -32; b = -672; c = +1;
Δ = b2-4ac
Δ = -6722-4·(-32)·1
Δ = 451712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{451712}=\sqrt{64*7058}=\sqrt{64}*\sqrt{7058}=8\sqrt{7058}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-672)-8\sqrt{7058}}{2*-32}=\frac{672-8\sqrt{7058}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-672)+8\sqrt{7058}}{2*-32}=\frac{672+8\sqrt{7058}}{-64} $

See similar equations:

| 9x-54=3x-6 | | 7(x+2)=3(x-12)-2 | | 3g+29=4+8g | | a=510 | | 7+y=35 | | (14x+70)°=180 | | n-3=6n-7n-3 | | (2x+-5)+2x=35 | | -5x-10=2-(x+10 | | |3x+6|-3=-3 | | 3x-5(x+4)=-16 | | 8v+12=5v+45 | | |3m-5|=8m | | 3/5x+12=2x-3 | | -{1}{5}x–18=2 | | -7(11*x)=0 | | 6x+9=`5 | | 23-8x=5x+1 | | -3/8(7y+2)-5/16(-6y-3)=-21/16 | | 6w-2=8w-8 | | 7x-8x^2=x | | -2k=2 | | 4x-3/8+x=43+3/4+1 | | 19+7x=-9 | | -23+9a=-6a+7 | | -18+5c=18+7c | | 4f-30=f+12 | | x=5-4x=8 | | x2=0.4 | | -28-6n=-8(2n+) | | 3x-44.8+62.8=180 | | 4x-2(x+3)=10x+10 |

Equations solver categories